2023 |
Matsuda, N., Lv, D., & Zheng, G. (2023). Teaching How to Teach Promotes Learning by Teaching. International Journal of Artificial Intelligence in Education, 33, 720-751. doi: 10.1007/s40593-022-00306-1. [Impact factor: 4.9] Matsuda, N. (2023). Teachable Agent as an Interactive Tool for Cognitive Task Analysis: A Case Study for Authoring an Expert Model. International Journal of Artificial Intelligence in Education, 32, 48-75. doi: 10.1007/s40593-021-00265-z. [Impact factor: 4.9] |
2022 |
Matsuda, N., Wood, J., Shrivastava, R., Shimmei, M., & Bier, N. (2022). Latent Skill Mining and Labeling from Courseware Content. Journal of Educational Data Mining, 14(2), 1-31. doi: 10.5281/zenodo.7086211. |
2021 |
Zhang, Z., Duan, X., & Matsuda, N. (2021). Building Place-based Research in a Study Abroad Program: Interdisciplinary Pedagogical Approaches to Learning about Cultural Sites. Perspectives on Undergraduate Research and Mentoring, 9(1), 1-16. Zimmer, W. K., McTigue, E. M., & Matsuda, N. (2021). Development and validation of the teachers’ digital learning identity survey. International Journal of Educational Research, 105, 1-18. [Impact factor: 1.794] |
2020 |
Matsuda, N., Weng, W., & Wall, N. (2020). The effect of metacognitive scaffolding for learning by teaching a teachable agent. International Journal of Artificial Intelligence in Education, 30(1), 1-37. |
2018 | Matsuda, N. (2018). The State-of-the-Art Pedagogical Agent Technology in the Field of Learning Science. Journal of Japan Society for Information and Systems in Education, 35(1), 13-20. |
2016 | Namatame, M., & Matsuda, N. (2016). Development of a Peer Review System for Art Education and its Evaluation. Transactions of Japan Society of Kansei Engineering. doi: 10.5057/jjske.TJSKE-D-15-00091 |
2015 | Li, N., Matsuda, N., Cohen, W. W., & Koedinger, K. R. (2015). Integrating representation learning and skill learning in a human-like intelligent agent. Artificial Intelligence, 219, 67-91. doi: http://dx.doi.org/10.1016/j.artint.2014.11.002 Matsuda, N., Cohen, W. W., & Koedinger, K. R. (2015). Teaching the Teacher: Tutoring SimStudent leads to more Effective Cognitive Tutor Authoring. International Journal of Artificial Intelligence in Education, 25, 1-34. Toyose, K., Matsuda, N., Asaba, N., Yamaguchi, H., & Nishino, K. (2015). Application of Waka-Kansei Database for Learning Japanese Waka in Middle School. Japan Journal of Educatinal Technology, 38(4), 329-340. |
2013 | Matsuda, N., Yarzebinski, E., Keiser, V., Raizada, R., Stylianides, G. J., & Koedinger, K. R. (2013). Studying the Effect of Competitive Game Show in a Learning by Teaching Environment. International Journal of Artificial Intelligence in Education, 23(1-4), 1-21. [invited for the special issue on the Best of ITS 2012] Matsuda, N., Yarzebinski, E., Keiser, V., Raizada, R., William, W. C., Stylianides, G. J., & Koedinger, K. R. (2013). Cognitive anatomy of tutor learning: Lessons learned with SimStudent. Journal of Educational Psychology, 105(4), 1152-1163. doi: 10.1037/a0031955. Rodrigo, M. M. T., Geli, R. I. A. M., Ong, A., Vitug, G. J. G., Bringula, R., Basa, R. S., . . . Matsuda, N. (2013). Exploring the Implications of Tutor Negativity Towards a Synthetic Agent in a Learning-by-Teaching Environment. Philippine Computing Journal, 8(1), 15-20. |
2012 | Toyose, K., Nishino, K., Asaba, N., Matsuda, N. (2012). The Waka-Kansei data base for learning Kansei-expression for Japanese Waka: Initial classroom use with a paper prototype. Japan Journal of Educatinal Technology, 36(2), 125-134. |
2004 | Matsuda, N., & VanLehn, K. (2004). GRAMY: A geometry theorem prover capable of construction. Journal of Automated Reasoning, 32(1), 3-33. |
2024 |
Shahriar, T., & Matsuda, N. (2024). “I am confused! How to differentiate between…?” Adaptive Followup Questions Facilitate Tutor Learning with Effective Time-on-task. In Andrew, Irene & Zitao (Eds.), Proceedings of the International Conference on Artificial Intelligence in Education (pp. 17-30): Springer. [0.15 acceptance rate out of 334 submissions] Zhang, Z., Dong, Z., Shi, Y., Price, T., Matsuda, N., & Xu, D. (2024). Students' Perceptions and Preferences of Generative Artificial Intelligence Feedback for Programming. In M. Neumann & S. Rosenthal (Eds.), Proceedings on the 14th Symposium on Educational Advances in Artificial Intelligence (pp.1-9). Vancouver: AAAI. |
2023 |
Shimmei, M., & Matsuda, N. (2023). Machine-Generated Questions Attract Instructors when Acquainted with Learning Objectives. In N. Wang, G. Rebolledo-Mendez, O. C. Santos, V. Dimitrova & N. Matsuda (Eds.), Proceedings of the International Conference on Artificial Intelligence in Education (pp. 3-15): Springer. [0.21 acceptance rate out of 251 submissions] Shahriar, T., & Matsuda, N. (2023). What and how you matters: Inquisitive Teachable Agent Scaffolds Knowledge-building for Tutor Learning. In N. Wang, G. Rebolledo-Mendez, O. C. Santos, V. Dimitrova & N. Matsuda (Eds.), Proceedings of the International Conference on Artificial Intelligence in Education (pp.126-138): Springer. [0.21 acceptance rate out of 251 submissions] Shimmei, M., & Matsuda, N. (2023). Can’t Inflate Data? Let the Models Unite and Vote: Data-agnostic Method to Avoid Overfit with Small Data. In R. Agrawal, Y. Narahari, M. Pechenizkiy, M. Feng, T. Käser & P. Talukdar (Eds.), Proceedings of the International Conference on Educational Data Mining (pp. 286-295): Educational Data Mining Society. Recipient of the Honorable Mention Award |
2022 |
Shimmei, M., & Matsuda, N. (2022). Finding Key Concepts to Automatically Generate Pedagogically Valuable Questions for Learning Objectives. Paper presented at the Annual Meeting of the American Educational Research Association (pp. 1-7). Nominee for the Best Paper award and for the Best Student Paper award |
2021 |
Shimmei, M., & Matsuda, N. (2021). Learning Association between Learning Objectives and Key Concepts to Generate Pedagogically Valuable Questions. In I. Roll & D. McNamara (Eds.), Proceedings of the International Conference on Artificial Intelligence in Education (pp. 320-324, short paper). Shahriar, T., & Matsuda, N. (2021). Can you clarify what you said?—Studying the impact of tutee agent’s follow-up questions on tutor’s learning. In I. Roll & D. McNamara (Eds.), International Conference on Artificial Intelligence in Education (pp.1-10). [0.24 acceptance rate out of 168 submissions] |
2020 | Shimmei, M., & Matsuda, N. (2020). Learning a Policy Primes Quality Control: Towards Evidence-Based Automation of Learning Engineering. In A. Rafferty & J. Whitehill (Eds.), Proceedings of the International Conference on Educational Data Mining (pp. 224-232): EDM. |
2019 | Shimmei, M., & Noboru, M. (2019). Evidence-Based Recommendation for Content Improvement UsingReinforcementLearning. In S. Isotani, A. Ogan, B. McLaren, E. Millán, P. Hastings & R. Luckin (Eds.), Proceedings of the International Conference on Artificial Intelligence in Education (pp. 369-373). Cham, Switzerland: Springer. Recepient of the Doctoral Consortium Scholarship Inventado, P. S., Inventado, S. G. F., Matsuda, N., Li, Y., Scupelli, P., Ostrow, K., . . . McGuire, P. (2019). Using Design Patterns for Math Preservice Teacher Education. In T. Isaku (Ed.), Proceedings of the 23rd European Conference on Pattern Languages of Programs (pp. 1-8). Irsee, Germany: ACM. |
2018 | Matsuda, N., Sekar, V. P. C., & Wall, N. (2018). Metacognitive scaffolding amplifies the effect of learning by teaching a teachable agent. In B. McLaren & B. du Boulay (Eds.), Proceedings of the International Conference on Artificial Intelligence in Education (pp. 311-323). [0.25 acceptance rate out of 186 submissions]. Park, S., & Matsuda, N. (2018). A Scalable Method for Rapid and Efficient Skill Discovery for Next-Generation Adaptive Online Courseware. Paper presented at the Annual Meeting of the American Educational Research Association(pp. 1-12). New York, NY. |
2017 | Yarzebinski, E., Dumdumaya, C., Rodrigo, M. M. T., Matsuda, N., & Ogan, A. (2017). Regional Cultural Differences in How Students Customize Their Avatars in Technology-Enhanced Learning Proceedings of the International Conference on Artificial Intelligence in Education (pp. 598-601). Dumdumaya, C., Banawan, M., Rodrigo, M. M., Ogan, A., Yarzebinski, E., & Matsuda, N. (2017). Investigating the Effects of Cognitive and Metacognitive Scaffolding on Learners using a Learning by Teaching Environment. In W. e. a. Chen (Ed.), Proceedings of the International Conference on Computers in Education (pp. 1-10). [0.23 acceptance rate out of 213 submissions]. |
2016 | Matsuda, N., Barbalios, N., Zhao, J., Ramamurthy, A., Stylianides, G., & Koedinge, K. R. (2016). Tell me how to teach, I'll learn how to solve problems. In A. Micarelli, J. Stamper & K. Panourgia (Eds.), Proceedings of the International Conference on Intelligent Tutoring Systems (pp. 111-121). Switzerland: Springer. [0.15 acceptance rate out of 134 submissions, double blinded review]. Matsuda, N., Van Velsen, M., Barbalios, N., Lin, L., Vasa, H., Hosseini, R., . . . Bier, N. (2016). Cognitive Tutors Produce Adaptive Online Course: Inaugural Field Trial. In A. Micarelli, J. Stamper & K. Panourgia (Eds.), Proceedings of the International Conference on Intelligent Tutoring Systems (pp. 327-333). Switzerland: Springer. [0.27 acceptance rate out of 119 submissions]. Matsuda, N., Chandrasekaran, S., & Stamper, J. (2016). How quickly can wheel spinning be detected? In T. Barnes, M. Chi & M. Feng (Eds.), Proceedings of the International Conference on Educational Data Mining (pp. 607-608). |
2015 | Yarzebinski, E., Ogan, A., Rodrigo, M. M. T., & Matsuda, N. (2015) Understanding Students' Use of Code-switching in a Learning by Teaching Technology. In C. Conati & N. Heffernan (Eds.), Proceedings of the international conference on artificial intelligence in education (pp. 504-516). [0.29 acceptance rate out of 170 submissions] Matsuda, N., Furukawa, T., Bier, N., & Faloutsos, C. (2015). Machine beats experts: Automatic discovery of skill models for data-driven online course refinement. In J. G. Boticario, O. C. Santos, C. Romero, M. Pechenizkiy, A. Merceron, P. Mitros, J. M. Luna, C. Michaescu, P. Moreno, A. Hershkovitz, S. Ventura & M. C. Desmarais (Eds.), Proceedings of the International Conference on Educational Data Mining (pp. 101-108). Madrid, Spain. [0.35 acceptance rate out of 121 submission] Matsuda, N., Stylianides, G. J., & Koedinger, K. R. (2015). Studying the Effect of Guided Learning by Teaching in Learning Algebra Equations Paper presented at the Annual Meeting of the American Educational Research Association Chicago, IL. |
2014 | Matsuda, N., Griger, C. L., Barbalios, N., Stylianides, G., Cohen, W. W., & Koedinger, K. R. (2014). Investigating the Effect of Meta-Cognitive Scaffolding for Learning by Teaching. In S. Trausen-Matu, K. Boyer, M. Crosby & K. Panourgia (Eds.), Proceedings of the International Conference on Intelligent Tutoring Systems (pp. 104-113). Switzerland: Springer. [0.18 acceptance rate out of 177 submissions] MacLellan, C., Koedinger, R. K., & Matsuda, N. (2014). Authoring Tutors with SimStudent: An Evaluation of Efficiency and Model Quality. In S. Trausen-Matu & K. Boyer (Eds.), Proceedings of the International Conference on Intelligent Tutoring Systems (pp. 551-560). Switzerland: Springer. [0.18 acceptance rate out of 177 submissions] Matsuda, N., Stylianides, G. J., Cohen, W. W., & Koedinger, K. R. (2014). Using a Synthetic Peer to Investigate the Effect of Competitive Learning by Teaching in Mathematics Paper presented at the Annual Meeting of the American Educational Research Association Philadelphia, PA |
2013 | Rodrigo, M. M. T., Ong, A., Bringula, R. P., Basa, R. S., Cruz, C. D., & Matsuda, N. (2013). Impact of Prior Knowledge and Teaching Strategies on Learning by Teaching. In G. McCalla & J. Champaign (Eds.), Proceedings of the AIED Workshop on Simulated Learners (pp. 71-80) MacLellan, C. J., Matsuda, N., & Koedinger, K. R. (2013). Toward a reflective SimStudent: Using experience to avoid generalization errors. In G. McCalla & J. Champaign (Eds.), Proceedings of the AIED Workshop on Simulated Learners (pp. 51-60) |
2012 | Matsuda, N., Yarzebinski, E., Keiser, V., Raizada, R., William, W. C., Stylianides, G., et al. (2012). Shallow learning as a pathway for successful learning both for tutors and tutees. In N. Miyake, D. Peebles & R. P. Cooper (Eds.), Proceedings of the Annual Conference of the Cognitive Science Society (pp. 731-736). Austin, TX: Cognitive Science Society. [acceptance rate: 0.38 out of 537 submissions] Matsuda, N., Yarzebinski, E., Keiser, V., Raizada, R., Stylianides, G., Cohen, W. W., et al. (2012). Motivational factors for learning by teaching: The effect of a competitive game show in a virtual peer-learning environment. In S. Cerri & W. Clancey (Eds.), Proceedings of International Conference on Intelligent Tutoring Systems (pp. 101-111). Heidelberg, Berlin: Springer-Verlag. [acceptance rate: 0.16 out of 177 submissions] Niminee for the best paper award Carlson, R., Matsuda, N., Koedinger, K. R., & Rose, C. (2012). Building a Conversational SimStudent. In S. Cerri & W. Clancey (Eds.), Proceedings of International Conference on Intelligent Tutoring Systems (pp. 563-569). Heidelberg, Berlin: Springer-Verlag. Ogan, A., Finkelstein, S., Mayfield, E., D'Adamo, C., N. Matsuda, & Cassell, J. (2012). "Oh, dear Stacy!" Social interaction, elaboration, and learning with teachable agents. Proceedings of CHI2012 (pp. 39-48). [acceptance rate: 0.23 out of 1577 submissions] Matsuda, N., Keiser, V., Raizada, R., Yarzebinski, E., Watson, S., Stylianides, G. J., et al. (2012). Studying the Effect of Tutor Learning using a Teachable Agent that asks the Student Tutor for Explanations. In M. Sugimoto, V. Aleven, Y. S. Chee & B. F. Manjon (Eds.), Proceedings of the International Conference on Digital Game and Intelligent Toy Enhanced Learning (DIGITEL 2012) (pp. 25-32). Los Alamitos, CA: IEEE Computer Society. [acceptance rate: 0.13 out of 56 submissions] Nominee for the best paper award Namatame, M., & Matsuda, N. (2012). An Application of Peer Review for Art Education Proceedings of the International Conference on Wireless, Mobile& Ubiquitous Technologies in Education (WMUTE2012). |
2011 | Matsuda, N., Yarzebinski, E., Keiser, V., Raizada, R., Stylianides, G., Cohen, W. W., et al. (2011). Learning by Teaching SimStudent – An Initial Classroom Baseline Study comparing with Cognitive Tutor. In G. Biswas & S. Bull (Eds.), Proceedings of the International Conference on Artificial Intelligence in Education (pp. 213-221): Springer. [0.32 acceptance rate out of 153] Li, N., Matsuda, N., Cohen, W. W., & Koedinger, K. R. (2011). A Machine Learning Approach for Automatic Student Model Discovery. In M. Pechenizkiy, T. Calders, C. Conati, S. Ventura, C. Romero & J. Stamper (Eds.), Proceedings of the International Conference on Educational Data Mining (EDM2011) (pp. 31-40). |
2010 | Matsuda, N., Keiser, V., Raizada, R., Tu, A., Stylianides, G., Cohen, W. W., et al. (2010). Learning by Teaching SimStudent: Technical Accomplishments and an Initial Use with Students. In V. Aleven, J. Kay & J. Mostow (Eds.), Proceedings of the International Conference on Intelligent Tutoring Systems (pp. 317-326). Heidelberg, Berlin: Springer. [acceptance rate: 0.38] Matsuda, N., Cohen, W. W., Koedinger, K. R., Stylianides, G., Keiser, V., & Raizada, R. (2010). Turning Cognitive Tutors into a Platform for Learning-by-Teaching with SimStudent Technology. In Proceedings of the International Workshop on Adaptation and Personalization in E-B/Learning using Pedagogic Conversational Agents (APLeC) (pp.20-25), Hawaii. Matsuda, N., Cohen, W. W., Koedinger, K. R., & Stylianides, G. (2010). Learning to solve algebraic equations by teaching a computer agent. In M. F. Pinto & T. F. Kawasaki (Eds.), Proceedings of the Conference of the International Group for the Psychology of Mathematics Education (Vol. 2, pp. 69). Li, N., Matsuda, N., Cohen, W., & Koedinger, K. (2010). Towards a computational model of why some students learn faster than others. Proceedings of the AAAI 2010 Fall Symposium on the Cognitive and Metacognitive Educational Systems. Arlington, VA. |
2009 | Matsuda, N., Lee, A., Cohen, W. W., & Koedinger, K. R. (2009). A Computational Model of How Learner Errors Arise from Weak Prior Knowledge. In N. Taatgen & H. van Rijn (Eds.), Proceedings of the Annual Conference of the Cognitive Science Society (pp. 1288-1293). Austin, TX: Cognitive Science Society. [acceptance rate: 0.32] |
2008 | Matsuda, N., Cohen, W. W., Sewall, J., Lacerda, G., & Koedinger, K. R. (2008). Why tutored problem solving may be better than example study: Theoretical implications from a simulated-student study. In B. P. Woolf, E. Aimeur, R. Nkambou & S. Lajoie (Eds.), Proceedings of the International Conference on Intelligent Tutoring Systems (pp. 111-121). Heidelberg, Berlin: Springer. [acceptance rate: 0.33] |
2007 | Matsuda, N., Cohen, W. W., Sewall, J., Lacerda, G., & Koedinger, K. R. (2007). Predicting students performance with SimStudent that learns cognitive skills from observation. In R. Luckin, K. R. Koedinger & J. Greer (Eds.), Proceedings of the international conference on Artificial Intelligence in Education (pp. 467-476). Amsterdam, Netherlands: IOS Press. [acceptance rate: 0.30] Matsuda, N., Cohen, W. W., Sewall, J., Lacerda, G., & Koedinger, K. R. (2007). Evaluating a simulated student using real students data for training and testing. In C. Conati, K. McCoy & G. Paliouras (Eds.), Proceedings of the international conference on User Modeling (LNAI 4511) (pp. 107-116). Berlin, Heidelberg: Springer. [acceptance rate: 0.20] |
2005 | Matsuda, N., Cohen, W. W., & Koedinger, K. R. (2005). Building Cognitive Tutors with Programming by Demonstration. In S. Kramer & B. Pfahringer (Eds.), Technical report: TUM-I0510 (Proceedings of the International Conference on Inductive Logic Programming) (pp. 41-46): Institut fur Informatik, Technische Universitat Munchen. Matsuda, N., Cohen, W. W., & Koedinger, K. R. (2005). Applying Programming by Demonstration in an Intelligent Authoring Tool for Cognitive Tutors. In AAAI Workshop on Human Comprehensible Machine Learning (Technical Report WS-05-04) (pp. 1-8). Menlo Park, CA: AAAI association. Matsuda, N., & VanLehn, K. (2005). Advanced Geometry Tutor: An intelligent tutor that teaches proof-writing with construction. In C.-K. Looi, G. McCalla, B. Bredeweg & J. Breuker (Eds.), Proceedings of The 12th International Conference on Artificial Intelligence in Education (pp. 443-450). Amsterdam: IOS Press. [acceptance rate: 0.31] |
2003 | Noboru Matsuda and Kurt VanLehn (2003). Modeling Hinting Strategies for Geometry Theorem Proving. In P. Brusilovsky, A. Corbett & F. de Rosis (Eds.), Proceedings of the 9th International Conference on User Modeling (pp.373-377), Berlin, Heidelberg: Springer. |
2000 | Noboru Matsuda, Kurt VanLehn (2000). A Reification of a Strategy for Geometry Theorem Proving. In G. Gauthier, C. Frasson & K. VanLehn (Eds.), Proceedings of the International Conference on Intelligent Tutoring Systems (Lecture Notes in Computer Science, No.1839, p.660), Berlin, Heidelberg: Springer. Noboru Matsuda, Kurt VanLehn, Decision Theoretic Instructional Planner for Intelligent Tutoring Systems. In B. du Boulay (Ed.), Workshop Proceedings on Modeling Human Teaching Tactics and Strategies (ITS2000, pp.72-83). |
2004 | Noboru Matsuda. (2004). The Impact of Different Proof Strategies On Learning Geometry Theorem Proving. Unpublished Ph.D dissertation, University of Pittsburgh, Pittsburgh, PA. |
2023 | Matsuda, N., Shimmei, M., Chaudhuri, P., Makam, D., Shrivastava, R., Wood, J., & Taneja, P. (2023). PASTEL: Evidence-based learning engineering methods to facilitate creation of adaptive online courseware. In F. Ouyang, P. Jiao, B. M. McLaren & A. H. Alavi (Eds.), Artificial Intelligence in STEM Education: The Paradigmatic Shifts in Research, Education, and Technology (pp.93-108). New York, NY: CSC Press. |
2021 | Shimmei, M., & Matsuda, N. (2021 ). Interactive Online Course Engineering Using Reinforcement Learning with Students’ Performance Profile. In H. Jiao & R. Lissitz (Eds.), Enhancing Effective Instruction and Learning Using Assessment Data (pp. 47-59). Charlotte, NC: Information Age Publishing. |
2019 | Shen, S., Shimmei, M.*, Chi, M., & Matsuda, N. (2019). Applications of Reinforcement Learning to Self-Improving Educational Systems. In A. M. Sinatra, A. C. Graesser, X. Hu, K. Brawner & V. Rus (Eds.), Design Recommendations for Intelligent Tutoring Systems (Vol. 7: Self-Improving Systems, pp. 77-96). Orlando, FL: US Army Research Lab |
2017 | Matsuda, N. (2017). Natural language processing in educational systems. In Hitoshi Matsubara (Ed.) Encyclopedia of Artificial Intelligence. Tokyo: Japan Society of Artificial Intelligence (p. 1101) Matsuda, N. (2017). Instructional Strategy. In Hitoshi Matsubara (Ed.) Encyclopedia of Artificial Intelligence. Tokyo: Japan Society of Artificial Intelligence (pp.1157-1159) Matsuda, N. (2017). Intelligent Pedagogical Agents. In Hitoshi Matsubara (Ed.) Encyclopedia of Artificial Intelligence. Tokyo: Japan Society of Artificial Intelligence (pp.1152-1153) |
2015 | Blessing, S. B., Aleven, V., Gilbert, S. B., Heffernan, N. T., Matsuda, N., & Mitrovic, A. (2015). Authoring Example-based Tutors for Procedural Tasks. In R. Sottilare, A. Graesser, X. Hu & K. Brawner (Eds.), Design Recommendations for Adaptive Intelligent Tutoring Systems: Authoring Tools (Vol. 3, pp. 71-94). |
2006 | Matsuda, N. (2006). How to get a Ph.D in America. In Akira Arimoto and Ikuo Kitagaki (Eds.) University Authority, (pp.132-137). Tokyo: Minervashobo Publishers Inc. |
2005 | Noboru Matsuda (2005). Instructional strategies. In Hozumi Tanaka (Ed.) Encyclopedia of Artificial Intelligence. Tokyo: Japan Society of Artificial Intelligence. Noboru Matsuda (2005). Natural language processing in educational systems. In Hozumi Tanaka (Ed.) Encyclopedia of Artificial Intelligence. Tokyo: Japan Society of Artificial Intelligence. |
1999 | Noboru Matsuda (1999). Cognitive model of geometry theorem proving with construction and its application to intelligent tutoring systems. In Yoshishige Sugiyama (Ed.) Towards new practical theories in mathematics education. Tokyo: Toyokan Publishers Inc. |
2016 | Nan Li, William W. Cohen, Kenneth R. Koedinger, and Noboru Matsuda. An Intelligent System with Integrated Representation Learning and Skill Learning. US Patent 20,160,026,932 |
2006 | Noboru Matsuda, William W. Cohen, Jonathan Sewall, and Kenneth R. Koedinger (2006). Applying Machine Learning to Cognitive Modeling for Cognitive Tutors, Technical report CMU-ML-06-105, School of Computer Science, Carnegie Mellon University. Noboru Matsuda, William W. Cohen, Jonathan Sewall, and Kenneth R. Koedinger (2006). What characterizes a better demonstration for cognitive modeling by demonstration? Technical report CMU-ML-06-106, School of Computer Science, Carnegie Mellon University. |