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Abstract. This study investigates a procedure for proving arithmetic-free Euclidean geometry the-
orems that involve construction. “Construction” means drawing additional geometric elements in
the problem figure. Some geometry theorems require construction as a part of the proof. The basic
idea of our construction procedure is to add only elements required for applying a postulate that
has a consequence that unifies with a goal to be proven. In other words, construction is made only
if it supports backward application of a postulate. Our major finding is that our proof procedure is
semi-complete and useful in practice. In particular, an empirical evaluation showed that our theorem
prover, GRAMY, solves all arithmetic-free construction problems from a sample of school textbooks
and 86% of the arithmetic-free construction problems solved by preceding studies of automated
geometry theorem proving.
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1. Introduction

Geometry theorem proving has been a challenging problem for automated rea-
soning systems. Indeed, some of the earliest work in automated reasoning used
geometry theorem proving as the task domain (Gelernter, 1959; Gelernter et al.,
1963; Reiter, 1972; Wong, 1972), and work has continued to the present time
(see, for example, Chou et al., 2000). A particularly challenging issue is to prove
theorems that require constructions, namely, to find proofs with additional lines,
points, or arcs constructed by a compass and a straightedge. No robust and ef-
ficient method for geometry theorem proving with construction is known so far.
Finding a construction is a hard task even for human problem solvers. Since one
can draw many segments and arcs at any point of a proof, the search space is
enormous.

Our long-term goal is to build an intelligent tutoring system for elementary
geometry. Any proofs and constructions found by our automated geometry theorem
prover must be stated with the common ontology of Euclidean geometry – the
axiomatized geometry system taught in schools. Thus, the algebraic techniques

� This research was supported by NSF grant number 9720359 to CIRCLE, Center for Interdisci-
plinary Research on Constructive Learning Environment.
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used in some earlier studies on geometry theorems (e.g., the area method discussed
in Chou et al., 1996) are not suitable for our purpose. The simplicity of the proof
procedure and the readability of the proofs are also important design issues.

The desired intelligent tutoring system will be built with a standard technique
called model tracing (Anderson et al., 1990) that requires a “complete” model
of reasoning just as an instructor is supposed to be “omniscient.” If the student
enters a step that is acceptable to instructors but the tutoring system does not
have it in its model’s reasoning, then the tutoring system will tell the student that
the step is unacceptable, which could have devastating consequences for learning.
Thus the desired geometry theorem prover must not only be able to find a single
comprehensible proof, it should also be able to find all proofs that are considered
acceptable to instructors. Accordingly, ad hoc heuristics that reduce the search
space are unacceptable because they may exclude proofs that the tutoring system
needs.

We discovered a construction procedure that is simple and involves no ad hoc
heuristics. We incorporated it into an automated geometry theorem prover called
GRAMY. In addition to presenting the construction procedure and GRAMY, this
paper addresses the following research questions:

– Is the construction procedure complete?
– Is the construction procedure efficient enough to run on a personal computer?

In the following sections, we first review the basic issues of geometry theorem
proving and give a brief history of the study. We then introduce our proof and con-
struction procedure in Section 3. GRAMY’s performance is evaluated in Section 4,
followed by discussion and future work in Section 5.

2. Overview of Geometry Theorem Proving with Construction

2.1. THE PROBLEM AND DEFINITIONS

The target domain is elementary Euclidean geometry. In this study, we deal only
with proofs of equality and congruence that do not involve arithmetic operations
(i.e., sums and multiplications).� Typical elements are points, segments, angles,
triangles, and their quantitative properties (e.g., length of a segment, degree of an
angle). Typical relations among elements are equivalence, congruence, perpendic-
ularity, parallelism, coincident (X and Y intersect at Z), membership (X is a part
of Y ), and their negations.

A problem consists of a set of given propositions, a proposition to be proved,
and a diagram called the problem figure. GRAMY represents propositions as for-
mulae in restricted first-order logic. Diagrams both for problem figures and for
other purposes are represented by the Cartesian coordinate system. A proposition is

� This restriction implies that the proofs of inequalities, ratios, and coincident intersections (i.e.,
to prove that three or more segments are intersecting at one point) are also excluded from the present
study.
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called quantitatively satisfied if the relation stated in the proposition is consistent
with the measurements of the corresponding geometric elements in the problem
figure. For example, a proposition AB = CD is quantitatively satisfied if two
segments AB and CD in the diagram are approximately the same length.

In this article, the term “postulates” refers to the true statements given to the
theorem prover such as definitions, axioms, and theorems that have been shown to
be true. A postulate consists of premises and a consequence that are represented as
propositions. Each postulate is associated with a generic diagram that represents
topological information that is not explicitly represented in the premises and the
conclusions.

The output from GRAMY is proofs, each of which is a sequence of postulate
applications with or without construction. Construction is represented by a set of
geometric elements that have been added to the problem figure. The prover must
ensure that the construction can be drawn with a compass and a straightedge. An
example of invalid construction is to add lines that divide a given angle into three
equal angles, as trisection of an angle is known not to be possible with a compass
and a straightedge.

GRAMY finds proofs and constructions that hold within a given problem figure.
In general, one must find a universal proof that, in some case, must be condi-
tional, thus requiring different problem figures that are consistent with the given
propositions. In most cases, however, classroom instruction requires students to
find a proof only for a particular problem figure and does not ask them to make
conditional proofs, so that is all GRAMY does.

Geometry theorem proving in general can be viewed as a state-space search.
Major components of a state are a problem figure, a set of propositions either
given or derived, and goals to prove. There are two kinds of operators to search
through the problem space: the operators for deduction and for construction. An
application of a deduction operator corresponds to an application of geometric
postulates, which changes either the set of propositions by forward chaining or
the set of goals by backward chaining. An application of a construction operator
changes the problem figure in a way that corresponds to construction by a compass
and a straightedge.

Since this study does not deal with arithmetic operators, applying a postulate
introduces no new geometric elements; hence, a proof has finitely many geometric
elements without construction. Furthermore, since there are finitely many relations,
there are finitely many possible relationships among the elements and hence finitely
many true propositions. The implication is that one can apply postulates at most
only finitely many times with no repetitive deductions. Therefore, regardless of
whether a proof is found or not, there is a state where no new propositions can
be derived. We call this state a quiescence state. The propositions in a quiescence
state are the deductive closure of the given propositions with respect to the given
postulates. In this paper, forward chaining from an arbitrary state to a quiescence
state is called exhaustive forward chaining. If a proof exists without construction,
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then there must be a proposition in the quiescence state that unifies with the goal
to prove.

2.2. BRIEF HISTORY OF STUDIES OF AUTOMATED THEOREM PROVING IN

GEOMETRY

Although different types of geometry theorem provers have been developed so far,
this section surveys only those studies that involve construction.

2.2.1. Proof Method: Axiomatic vs. Algebraic

The previous provers fall into one of two categories. The axiomatic approach uses
a set of axioms and inference rules to formulate a sequence of deductions as a
proof. Also, it typically uses heuristics to prune or guide the search. The algebraic
approach translates a set of postulates as well as a theorem to prove into equations
in such a way that solving the equations corresponds to finding a proof for the
theorem.

The algebraic approach is known to be powerful in that it can find proofs for
very hard problems. Examples of practical provers based on the algebraic approach
include the characteristic set method (Wu, 2000), the elimination method (Wang,
1995), the Gröbner basis method (Kapur, 1986), and the Clifford algebra approach
(Li, 2000). A drawback to these efficient approaches is that they are seldom com-
prehensible for students learning Euclidean geometry. As an exception, the area
method (Chou et al., 1996) is axiomatized by so-called area axioms that are intu-
itive enough for students to understand. As a result, the theorem prover can output
a “readable” proof as a sequence of transitions via axiom applications. A drawback
is that the students must be taught the area axioms instead of the standard Euclidean
axioms. Hence, a theorem prover based on the area method is hardly an appropriate
application for geometry education in current school systems.

One interesting aspect of the area method is that for a certain class of geometry,
the area method proves problems that require construction. This class is character-
ized as constructive geometry (Chou and Gao, 1989). However, there are problems
that do not fall into the constructive geometry class that can be proved by Euclidean
axioms with construction (for example, problem P108 shown in Appendix A).

Most automated theorem provers that deal with construction use the axiomatic
paradigm. They all add geometric elements to the problem figure so that a de-
sired postulate will apply. The challenge is to focus only on a limited number of
constructions. Most provers utilize ad hoc heuristics to avoid unproductive con-
structions. One of the educational defects of those approaches is that they force
students to learn many ad hoc heuristics as well. Another problem is that it is
hard to show the completeness for theorem provers that use ad hoc heuristics. The
next few sections review construction heuristics and other aspects of the axiomatic
approach.
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2.2.2. Heuristics of Construction

Heuristics of construction can be divided into three types: (1) constructing new
segments by only connecting existing points, (2) drawing segments and points
that are sufficient to make desired postulates applicable, and (3) applying ad hoc
construction heuristics.

Connecting Existing Points. The simplest heuristic is to draw a new line by con-
necting any existing two points (Anzai et al., 1979; Elcock, 1977; Gelernter, 1959;
Greeno et al., 1979). This heuristic does not introduce new points except the inter-
sections of new segments and existing ones. Hence a construction procedure that
applies only this heuristic is not complete.

Making a Desired Postulate Applicable. In many construction problems, a par-
ticular postulate has a consequence that unifies with the goal to prove but its entire
configuration does not match with the problem figure.� Hence, one heuristic is to
add elements to the figure that will enable the postulate to apply. Most of the con-
struction procedures in the literature fall into this category. Two major issues here
are (1) selecting a desired postulate to apply and (2) ensuring that the constructed
elements can be drawn with a compass and a straightedge. Most previous work
resolves both issues by considering construction only for a particular postulate.
Nevins (1975) implemented construction only for the right-angle triangle axiom.
Elcock (1977) designed a procedure to construct a new point as an intersection
of two existing segments. Greeno et al. (1979) implemented a construction for
congruent triangles sharing a segment. Coelho and Pereira (1986) implemented
construction only for the quadrilateral axiom.

Ad Hoc Heuristics. Performance of a theorem prover could be improved by adding
ad hoc heuristics for construction. For example, Wong (1972) proposed a heuristic,
called midpoint reflection, that says, “If there exists a segment AB such that one
of its end points B is a midpoint of segment XY, then construct a new point by
reflecting A around XY.” This heuristic leads Wong’s prover to the construction
for Problem P103 shown in Appendix A. Our proof procedure identified that this
problem requires three constructions for three different postulates, but because of
a technical issue in its implementation, GRAMY could not solve this problem.
Although Wong’s heuristic makes much sense, because of the excessive gener-
ality we doubt it would work in a practical situation without a search explosion
(indeed, Wong’s heuristic has never been implemented). Another example of ad
hoc heuristics can be seen in AUXIL (Suwa and Motoda, 1989). AUXIL requires a
human problem solver to input proofs with construction. It then learns how to make
the construction by generalizing the operations used in the proofs. The acquired
construction operators and heuristics can be so complicated that they are hardly

� A counterexample of this observation is the construction with a transitive substitution, described
in Section 3.2.5.
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teachable. Hence we doubt that this type of prover can be a building block of a
tutoring system, even though it is computationally tractable (see Suwa and Motoda
(1989) for more about their so-called frustration-based search control technique).
An interesting study was conducted by Chou et al. (2000) in which they built a
powerful theorem prover capable of construction that can solve very hard prob-
lems. The construction procedure is implemented as a set of rules that specify
how to construct a new point in a certain situation. Unfortunately, because their
construction rules are not goal oriented, and the prover has the potential to make
many unsuccessful constructions. Furthermore, their proof procedure works only
for the class of constructive geometry, and therefore it has the same limitation as
the area method mentioned in the previous section.

2.3. WHY IS CONSTRUCTION SO HARD?

To understand why theorem proving with construction is so hard, consider the
following brute-force proof procedure:

1. Apply exhaustive forward chaining without construction.
2. If a proof is found, namely, if there exists a derived proposition that unifies with

the goal, then output the proof and quit.
3. Apply every applicable primitive construction operator once to the problem

figure, and make a new state with the modified figure. A primitive construction
operator is either (1) drawing a line between two existing points or (2) drawing
an arc of a specified radius about an existing point.

4. Go to step 1.

If a proof with construction does exist, then the necessary construction should
be made with a finite number of applications of the primitive construction oper-
ators, which takes place during the third step mentioned above. Thus, the above
procedure will eventually find the proof. However, there are usually a large number
of applicable primitive construction operators at step 3, which greatly expands the
problem figure. This means that exhaustive forward chaining may produce a very
large number of propositions when it next applies at step 1. In short, this proof
procedure is complete but not practical.

We need to restrict the application of construction operators so that useless
construction will never be made. One approach to making construction more ef-
ficient is to combine several primitive operators into a macro operator that does
only “meaningful” construction and uses only such macro operators. To drop a
perpendicular line from a given point to a given line is an example of a macro
operator. Furthermore, the search can be made more efficient if macro operators
contain more information than just a sequence of primitive operators. For example,
consider again the construction of a perpendicular line from a given point to a given
segment. As shown in Figure 1, this construction is done by a macro operator that
comprises a sequence of seven primitive operators. This sequence does not hold
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Figure 1. Construction for a perpendicular by primitive operators.

enough information to prove that � PXB is a right angle, which requires drawing
auxiliary segments SQ, QT, TR, and RS. Instead of forcing the theorem prover
to find this additional construction, we can augment the macro operator to assert
the right angles as true propositions. This augmentation not only improves the
efficiency but also provides a rationale for the construction.

However, replacing primitive construction operators with macro operators does
not settle the explosion of the search. We tested the brute-force procedure described
above with five macro operators: copying a distance onto a line, dropping a per-
pendicular from a point to a line, drawing a perpendicular to a point on a line,
drawing a parallel line, and plotting a midpoint. On Problem P123 in Appendix A,
for instance, the average number of macro operators applicable at each state was 78.
These macro operators did not constrain the search enough.

In sum, a brute-force search for construction would not be computationally
tractable even with macro operators. We need to add more conditions that tell
us when to apply the operators. The next section describes the approach used in
GRAMY.

3. Proof and Construction Procedures in GRAMY

This section describes the whole proof procedure with a construction technique
implemented in GRAMY. A discussion on its completeness follows.

3.1. KNOWLEDGE REPRESENTATION

In GRAMY, postulates that share the same topological configuration of points and
lines are composed into a single knowledge piece, called a diagrammatic schema
(DS). A DS consists of a diagram representing the topological configuration of the
geometric elements involved in a DS, a set of propositions representing geometric
relations (equal, parallel, perpendicular, etc.) that refer to the elements in the di-
agram, and deductive statements in the form “if a set of (possibly zero) premises
holds, then a set of consequences holds” where the premises and the consequences
refer to the geometric propositions. Figure 2 shows an example of a DS that rep-
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Figure 2. Example of a diagrammatic schema (DS).

resents the postulates related to triangle congruence. Seven relations are shown
under “Proposition” and four deductive statements under “Deduction.” Of those
four deductive statements, the first three statements show the conditions for two
triangles to be congruent. The last statement represents a postulate that says, “If
two triangles are congruent, then corresponding segments and angles are equal.”

The topological configuration associated with each DS is called a DS diagram.
We use the knowledge representation technique developed in Perdix (Greeno et al.,
1979) to represent the DS diagram as a semantic network. The nodes correspond to
geometric elements in the DS diagram (points, segments, rays, lines, angles, trian-
gles, quadrangles, etc.) and the links correspond to relations between two elements
(e.g., a point is an end point of a segment). For example, associated with the DS
for the triangle-congruent postulate are 6 points, 6 segments, 12 rays, 6 angles, and
2 triangles. The problem figure is represented the same way.

Geometric propositions are represented with first-order predicates. The argu-
ments of a predicate are geometric elements in a problem figure or a DS diagram.
For example, if two segments AB and CD are represented as the nodes s1 and s2 in
the semantic network, then the proposition AB = CD is represented as eq(s1,s2).
Although many provers use only points as arguments, GRAMY’s representation
reduces the combinatorics that would otherwise be caused by unifying coreferring
expressions such that AB = CD and BA = DC.

3.2. CONSTRUCTION PROCEDURE GUIDED BY DIAGRAMS

A proof is a sequence of postulate applications. Hence, if construction is made for
a proof, it is made so that some postulate, which otherwise is not applicable, can be
applied. In other words, the construction involves adding segments that are not part
of the original problem figure but are necessarily involved in postulate applications
in the proof.

The above observation implies that knowing which postulates are used in a
proof is sufficient to determine the target elements of construction. Three issues
arise: (1) how to find a set of postulate applications that constitutes a proof, (2) how
to identify the segments required making those postulates applicable, and (3) how
to construct (i.e., how to calculate coordinates of the end points of) those missing
segments. These issues are discussed in the next three sections.
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Figure 3. A dependency network representing a proof with construction.

3.2.1. Identifying Postulates in a Proof

A postulate is called useful if its consequence unifies with the goal to prove and all
premises that match with the problem figure are quantitatively satisfied, whereas
some premises might not match with the problem figure. The basic idea on con-
trolling a search for construction is that GRAMY attempts construction only when
required for the backward application of a “useful” postulate. This idea is best
explained with an example, depicted in Figure 3. The figure shows a dependency
network produced by exhaustive forward chaining on a geometry problem that has
five given propositions shown as the gray circles at the bottom row. A small square
shows a postulate application. The links coming into a square from the bottom
correspond to premises of a postulate application, and the links going out from the
top correspond to its consequences. White circles are derived propositions. If the
problem is solvable, then one of the derived propositions must unify with the goal
to be proven. Let P be a proposition that unifies with the goal. Thus, the heavier
links, both solid and dotted, show a proof for the proposition P . Hence exhaustive
forward chaining would eventually find a proof for the problem. The lighter links
indicate the extra work done by exhaustive forward chaining, namely, postulate
applications that do not appear in the proof.

Now we extend the above model by introducing construction. Let F be the
problem figure required to prove P , namely, all geometric elements appearing in
the proof of P are in F . Suppose that we remove a few segments from F , taking
care that they can be added back by construction. Some of the propositions can no
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longer hold in the resulting figure (e.g., if segment AB is removed, then AB = CD
does not hold). Assume that those propositions are indicated by the dotted circles in
Figure 3. Consequently, postulate applications that involve dotted circles, indicated
by the dotted squares, cannot apply either.

To find a proof, that is, to find postulate applications in the heavier links both
solid and dotted, one must construct the segments that have been removed. To avoid
search explosion, we would like the theorem prover to perform construction only
for the postulate applications specified by heavier dotted links. More precisely, the
theorem prover must first identify that postulate applications 13, 8, 6, and 2 are part
of the proof and construct only those segments such that propositions X, Y , and Z

hold in the resulting figure.
One approach is to first apply exhaustive forward chaining without construction,

then backward chain once with a useful postulate. We then apply construction
operators so that the diagram associated with the useful postulate matches the
problem figure completely. Now we have a new state with a new problem figure
and new goals. Since the problem figure has changed, forward chaining may assert
new propositions. So, we apply exhaustive forward chaining followed by backward
chaining with construction again, and we keep repeating this cycle until a proof is
found.

In Figure 3, postulate applications 1, 3, 4, 5, and 9 occur during initial forward
chaining. Assume there is no postulate applicable at this point. The prover then
makes a construction so that backward chaining for a useful postulate applica-
tion 13 would succeed. If this construction eventually makes propositions X, Y ,
and Z appear in the problem figure, then succeeding exhaustive forward chaining
causes postulate applications 2, 6, and 8, which completes a proof.

It is not necessarily the case that a desired construction can be made by a useful
postulate relative to the top-level goal, namely, postulate application 13 for P in
the above example. Consider a problem that has the same five givens as shown at
the bottom of Figure 3 but has Q as a goal to prove instead of P . In this case, the
prover must do postulate application 15 backwards to create P as a subgoal of Q.
In general, a theorem prover might need to apply backward chaining multiple times
before carrying out construction.

Once a useful postulate is determined, there arise two technical issues to make
use of the above idea: (1) matching the DS diagram to the problem figure partially,
which in turn identifies DS segments that need to be constructed, and (2) discover-
ing a sequence of construction operators that constructs these segments.

3.2.2. Identifying Missing Segments to Be Constructed

Intuitively, overlapping a DS diagram associated with a selected useful postulate
with the problem figure reveals missing segments necessary to apply the useful
postulate. This overlapping must be constrained so that the consequence of the
useful postulate overlaps the goal to be proven. For example, if the goal is to prove
AB = DE, then the triangle-congruent postulate �uvw ≡ �xyz → uv = xy is
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useful. In this case, one may wish to overlap two triangles, �uvw and �xyz, onto
the problem figure so that the segment uv overlaps AB and xy overlaps DE. The
segments in the DS diagram that cannot be overlapped indicate which segments
must be added to the problem figure.

As mentioned in Section 3.1, DS diagrams are represented as semantic networks
in GRAMY. Overlapping is equivalent to finding a partial match between a seman-
tic network representing a problem figure and a semantic network representing
the DS diagram of a useful postulate. A pair of an element in the DS diagram
and an element of the problem figure is called a binding. A partial match is a set
of bindings, which we hereafter call a binding list. An element in a DS diagram
involved in a binding list is said to be bound. For the sake of explanation, we need
to discriminate between the elements in the problem figure and the ones in the
DS diagram; for example, a problem point refers to a point in the problem figure,
whereas a DS point refers to a point in the DS diagram.

Although finding a partial match for two directed graphs is NP-hard, we have
achieved adequate performance by formalizing it as a constraint satisfaction prob-
lem and solving it with a forward-checking backtracking algorithm (Haralick and
Elliott, 1980) as described below.

Assume that semantic network SNDS represents the DS diagram associated with
a useful postulate and that semantic network SNP represents a problem figure. A
partial match binds each node in SNDS with a node in SNP so that the links in SNDS

and SNP are consistent with the bindings. We let the variables vi (i = 1, . . . , n)
of the constraint satisfaction problem represent the n nodes of SNDS. The domain
of a variable vi consists of a subset of nodes in SNP that are the same type as vi .
For example, the domain of a variable that represents a DS point is a set of all
problem points. A partial match occurs when some DS elements are not bound
to any problem elements. This is implemented by binding the value NIL to the
variables representing such DS elements. The value NIL is explicitly added into
the domain of each variable so that the constraint-satisfaction algorithm need not
be modified.

The constraints model relations among geometric elements. There are two
classes of constraint:

(1) Constraints on bound variables: These constraints check the consistency
among the relations between the bound geometric elements. For example, if
v1 and v2 are parallel lines in SNDS and they are bound to lines x1 and x2 in
SNP , then x1 ‖ x2 must be quantitatively satisfied. The initial domain values
that are inconsistent with the variable to be bound are also filtered out, prior
to the search.

(2) Constraints for partial matching: These constraints check whether a variable
can be bound to NIL by testing topological feasibility with the bound vari-
ables. For example, assume that v1 and v2 are two rays intersecting at point
v3. If both v1 and v2 are bound to non-NIL values x1 and x2, then v3 cannot
be bound to NIL (indeed, it must be bound to the problem point that is an
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intersection of problem rays x1 and x2). As another example, if all three seg-
ments of a triangle are bound to non-NIL values, then the triangle itself must
be bound to a non-NIL value as well.

3.2.3. Construction Operators to Construct a Missing End Point

Given a partial match, we now describe a technique for finding a sequence of
construction operators to create missing segments in the problem figure.

There exist only three types of partial match for a DS segment with respect
to bindings for its end points: both end points are bound, only one of the end
points is bound, or none of the end points is bound. One of these cases can be
eliminated by noticing that no postulate has an isolated DS segment. That is, all
the segments in a postulate have at least one end point shared with other segments.
Thus, repeatedly constructing a problem segment for a DS segment with a single
end point bound would eventually make all DS segments have both of their end
points bound. For example, consider a useful postulate with a rectangle abcd that
gets bindings {a/NIL, b/X, c/Y, d/NIL}.� In this case, we have a DS segment
(bc) with both end points bound, two DS segments (ab and cd) with a single end
point bound, and a DS segment (ad) with no end points bound. If we successfully
construct a problem segment that corresponds with DS segment ab, then the DS
point a is bound to a new problem point. Now, the DS segment ad has a single end
point bound. Furthermore, constructing one of the remaining two DS segments
makes the last DS segment have both end points bound.

The above observation allows us to safely focus only on the construction of
segments with one or two bound end points. The basic idea follows:

1. For each unbound DS segment with both end points bound, construct a cor-
responding problem segment by simply connecting the two problem points
corresponding to the two bound DS end points. Update the partial match. If
a perfect match is found, then halt (i.e., construction is completed).

2. Nondeterministically choose an unbound DS segment that has exactly one of
its end points, say p, unbound.

3. Try to construct a problem point for the DS point p using the techniques de-
scribed below. If the construction fails (i.e., there is no construction with a
compass and a straightedge), back up to step 2 and choose another unbound DS
segment. Otherwise update the partial match.

4. Go to step 1. Notice that the unbound DS segment chosen in step 2 now has both
end points bound, so step 1 will construct its problem segment at this time.

Let us call the unbound DS segment chosen in step 2 the target DS segment.
Also, let us call the unbound DS end point of the target DS segment the target DS
end point. Let us call the problem segment that we will construct for the target

� In this article hereafter, the small letters are used to represent the elements in a DS diagram and
the capital letters to represent the elements in a problem figure.
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segment the target problem segment, and also call the to-be-constructed end point
the target problem end point.

For the target problem segment to be constructed, it is sufficient to construct
the target problem end point. Determining the coordinate of the target problem
end point is equivalent to determining the direction and length of the target prob-
lem segment relative to its end point that is bound. This motivates the following
definitions regarding the measurement of those quantities:

– The length of the target problem segment is determined if the useful postulate
states that the target DS segment is congruent to some DS segment that is
bound. For instance, suppose the target DS segment is xy. If a premise of a
useful postulate requires xy = uv and if uv is bound to problem segment AB,
then the length of the target problem segment must be equal to the length
of AB.

– The direction of the target problem segment is determined if one of the fol-
lowing four conditions holds. Suppose rt is a DS ray on the target DS segment
where the end point of rt is the same as the bound end point of the target DS
segment (see Figure 4 where lt is the target DS segment):

1. Ray rt is bound; hence the problem ray bound to rt gives the direction.
2. Ray rt contains a bound DS point p; hence the problem points bound to p

and to the end point of rt give the direction.
3. A premise of the useful postulate specifies that rt is parallel to a bound DS

ray r ′
t .

4. A premise of the useful postulate specifies that rt is perpendicular to a
bound DS ray r ′

t .

For each of these four cases, there exist a compass procedure and a straight-
edge procedure for drawing a problem ray from A in Figure 4 (e.g., for the last
case, we extend r ′

t and then draw a perpendicular to r ′
t through A, as shown in

Figure 1).

Given these definitions, we now examine different cases to construct a target
problem end point depending on whether the length and/or direction are deter-
mined. As shown in Figure 4, assume that pt is the target DS end point and pb is
the bound end point of the target DS segment. Also assume that A is the problem
point to which pb is bound, and B is the target problem end point that we wish to
construct.

We consider the easiest case first. If the length and the direction of the target
problem segment are both determined, then GRAMY constructs point B as follows.
It extends a ray from A in the determined direction. GRAMY then plots B on the
ray such that |AB| is equal to the length of the problem segment that determines the
length of the target problem segment. The second operation corresponds to drawing
an arc about A with the radius copied by a compass. This construction procedure
must always succeed because the ray intersects the arc exactly once.
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Figure 4. Construction of a target problem end point with the third point.

Next, we consider the hard case where either the length or the direction of the
target problem segment is determined, but not both. GRAMY nondeterministically
chooses a bound DS point p0 not equal to pb or pt (see Figure 4). Suppose the
problem point that is bound to p0 is C. There are several cases to consider. First,
if the length of the problem segment BC is determined and the length of the target
problem segment AB is determined, then GRAMY can draw arcs of determined
radii about A and C. Second, if the direction of BC is determined and the length
of AB is determined, then we can draw a ray from C in the determined direction
and an arc of determined radius around A.� Third, if the directions of both AB and
BC are determined, then GRAMY can draw rays from A and C in the determined
directions. There is a fourth case, wherein the length of BC is determined and the
direction of AB is determined, but this is already covered by the second case, given
that one switches p0 and pb. To avoid duplication, GRAMY does not generate a
construction for this case.

It turns out that there exists a certain kind of problem that cannot be solved
by the above construction technique. This kind of problem requires a constructed
segment to hold a certain relation with a problem segment that is not involved in
a partial match for the useful postulate. In order to handle such cases, GRAMY
uses a novel technique described in the next section. The technique also solves
the problems that require construction where the existence of constructed points is
dubious (e.g., ray grazing a segment; see the footnote).

3.2.4. Construction with a Reference to a Free Segment

The problem shown in Figure 5 cannot be solved with the construction techniques
described in the preceding section. The useful postulate is the triangle-congruent
axiom with a partial match involving {pb/D, p0/A, r0/rayAC}, using the same

� The arcs about A and the ray from C may have either one or two intersections. If the construction
apparently has only one intersection (i.e., the arc just grazes the ray), a teacher would either reject a
student’s proof that uses such a construction or require a proof of the existence of such an intersec-
tion point. GRAMY simply does not generate such a construction and picks up other postulates or
bindings. A future extension could perhaps generate a construction and add a goal to the search state
to prove that the point or points exist.
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Figure 5. An example of construction referring to a free segment.

configuration elements in Figure 4. Since the useful postulate states that the target
problem segment is equal to ED, GRAMY can draw the target problem point (X)
as an intersection of ray AC and an arc about D with |DE| as the radius, and assert
DX = DE as a true proposition. However, such construction does not lead to a
proof. Instead, the segment DX must be constructed to be parallel to AB.

To deal with this kind of problem, GRAMY tries to convert the first two hard
cases mentioned in the previous section into construction without drawing an arc.
Specifically, if drawing an arc successfully finds construction, then GRAMY also
tries to construct the same point via a ray instead of an arc. To do so, GRAMY
searches for a problem segment, even though it is not involved in the partial match,
that is approximately parallel or perpendicular to the target problem segment found.
It then treats the target segment as having a direction determined by the parallel or
perpendicular segment.

In the example shown in Figure 5, once the coordinate of problem point X is
determined as an intersection of ray AC and the arc from D, it can be seen that AB
is approximately parallel to DX. This observation is possible by calculating slopes
of AB and DX based on the xy-coordinates of A, B, D, and X. As a result, GRAMY
constructs X as an intersection of AC and a line from C parallel to AB, and asserts
DX ‖ AB as a true proposition. This technique is also effective even when the circle
about D just grazes the line AC.

We call this technique construction with a reference to a free segment. This
construction procedure can produce different constructions by using different ref-
erence segments in the problem figure that are parallel or perpendicular to the
target segment. GRAMY finds all reference segments, and it outputs a different
construction for each.

3.2.5. Construction with Transitive Substitution

Like many theorem provers, GRAMY treats equality specially. It maintains a set
of equivalence classes. When it derives the equality of two elements (e.g., two
segments are equal, or two triangles are congruent), it puts them into the same
equivalence class and adds this class to the set of equivalence classes unless the
class is there already. GRAMY’s pattern matcher for propositions is modified so
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that when it tests whether a proposition holds, it succeeds not only if the two
constants are known to be equal but also if they are in the same equivalence class.
Theorem provers that do not treat equality in this way must have transitivity axioms
of the form “If X = Y and Y = Z, then X = Z,” which not only increase the
combinatorics but clutter the proof with “trivial” inferences.

Since GRAMY treats equality specially when doing its regular reasoning, it
must also treat equality specially when doing construction. For example, to prove
a goal AB = CD, it can consider finding a third segment, say, PQ, that is equal
to AB, and then can try to prove PQ = CD. Assuming that segment PQ does not
appear in the original problem figure, the triangle-congruent postulate involving
�uvw ≡ �xyz might be useful with a partial match that involves {uv/AB, xy/NIL}.
Once a partial match is found, we can apply the same procedure as described in the
previous sections. If construction eventually draws PQ, and there exists a proof
for �uvw ≡ �xyz (hence AB = PQ), then one may find a successful proof for
AB = CD by a transitive substitution provided that PQ = CD can also be proven.
GRAMY considers doing such construction not only for segment congruence but
also for all types of relationships that are transitive. Six problems in our problem
corpus require this construction technique (see Section 4.1).

3.3. PROOF PROCEDURE WITH CONSTRUCTION

This section summarizes the procedure to search for a proof with construction.
The states in the search space consist of a problem figure, a set of true propositions
(i.e., given and derived facts), and an ordered list of goals called the goal queue.
The search maintains a state queue for breadth-first search. The following is the
main search procedure:

1. Let S be the initial state, and let its goal be the top-level goal. Initialize the state
queue to hold just S.

2. (Exhaustive forward chaining) If the state queue is empty, then quit. Otherwise
remove state S from the front of the state queue. Apply exhaustive forward
chaining to S. S now holds the deductive closure of the given propositions and
the problem figure under the given postulates.

3. (Goal test) Remove all the goals in the goal queue of S that unify with the
propositions in S. If S has no goals left in its goal queue, then one proof has
been found. Put S aside, and go to step 2.

4. (Backward chaining) For each postulate p such that its DS diagram perfectly
matches with the problem figure in S, all p’s premises are quantitatively sat-
isfied, and p’s consequence unifies with the first goal in the goal queue of S,
make a state Sp that is a copy of S with all the premises of p put at the front of
the goal queue. Put Sp onto the end of the state queue. Notice that Sp has the
same problem figure as S.

5. (Construction) For each useful postulate for the first goal in the goal queue of S,
find all constructions for each partial match with the construction procedure
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below. For each successful construction, create a new state with a new problem
figure. Put these states on the end of the state queue. Notice that the new state
has the same goal queue as in S.

6. Go to step 2.

The construction procedure takes a useful postulate and a partial match as input,
and outputs all possible constructions. This is also done by state-space search.
Major components of a state include a problem figure, a list of missing segments,
and a binding list. A single application of a construction operator adds one missing
segment into the problem figure. Thus, each state has exactly one missing segment
less than its ancestor state. Since there are only a finite number of missing segments
to be constructed, depth-first search works fine. The following is the construction
procedure:

1. Make an initial state with the original problem figure and the partial match.
Initialize state queue with it.

2. (Goal test) If the state queue is empty, then halt. Otherwise remove a state C

from the front of the state queue. If C has no missing segments left, then
construction is done. So put C aside and repeat this step.

3. (Construction by connecting bound end points) For each unbound DS segment
with both end points bound, add the corresponding problem segment to the
problem figure by simply connecting the two problem points corresponding to
the bound DS end points. Update the binding list with the newly constructed
segments.

4. (Construction operator for missing segment with length and direction deter-
mined) Nondeterministically choose an unbound DS segment that has exactly
one of its end points unbound and has both its length and direction determined.
Calculate the coordinates of the target problem end point as an intersection of
an arc with the determined length as its radius and a ray with the determined
direction. Create a new state with the new problem figure. Assert appropriate
facts to the new state (e.g., that the target segment is congruent to the segment
that determined its length). Update the binding list in the new state so that the
target DS end point is bound to the newly added intersection.

5. (Construction operator for a missing segment with either length or direction
determined) Nondeterministically choose an unbound DS segment that has ex-
actly one of its end points, pt , unbound and has either its length or direction (not
both) determined (see Figure 4 where lt is the unbound DS segment chosen).

5.1. Nondeterministically choose a bound DS point p0 such that the segment
between p0 and pt has either its length or direction determined.

5.2. Calculate the coordinate of an intersection(s) of the appropriate arcs and
rays (depending on whether lengths or directions are determined) for the
problem point that is supposed to be bound to pt .
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5.3. For each intersection, create a new state with the new problem figure
by adding the intersection. Assert appropriate facts (those made true by
construction) to the new state. Update the binding list in the new sate so
that the target DS end point is bound to the newly added intersection.

6. (Construction operator for a construction with a reference to a free segment)
Perform the same step specified in step 5 but not step 5.3. Nondeterministically
choose a reference segment in the problem figure that is parallel or perpendic-
ular to the target problem segment determined by its bound end point and the
calculated intersection. For each reference segment, create a new state with
the new problem figure by adding the intersection. Assert appropriate facts
including that the new segment is parallel or perpendicular to the reference
segment. Update the binding list in the new state. Go to step 2.

At several steps in this procedure, failure can occur. For instance, after drawing
the relevant arcs and rays, there may be no intersection points. In this case, no
construction is produced, and that nondeterministic choice dies. If all such choices
fail, then this branch of the search also fails, which in turn abandons the whole
attempt to apply the selected useful postulate with the selected bindings at step 5
in the main search procedure.

3.4. SEMICOMPLETENESS OF THE PROOF PROCEDURE

Now we examine the completeness of the proof procedure. Since the ability of our
construction procedure to produce a particular construction thoroughly depends on
a set of postulates available, we emphasize that we discuss the completeness of the
search procedure, not the completeness of the set of postulates given to GRAMY.
In other words, we claim that GRAMY can find all proofs that consist only of the
postulates given.�

In the proof procedure above, the first list of steps defines the main procedure,
and the second set defines the subprocedure for generating constructions that pro-
vide a perfect match for the useful postulate. We have not yet succeeded in proving
that the subprocedure is complete. In particular, the restriction that step 5.1 choose
a bound DS point p0 is necessary to prevent combinatorial explosion. Arcs or
rays that are drawn via p0 are actually drawn from the problem point that p0 is
bound to. But it may prevent the subprocedure from generating constructions that
both make the useful postulate match and lead ultimately to a successful proof.
In principle, one could draw arcs or rays from any problem points that are not
involved in the partial match. If the resulting construction makes the figure match
the useful postulate, then this branch of the search might survive to become a
successful proof. For example, assume that a goal AB = CD is proved with the
triangle congruent postulate �ABP ≡ �CDQ where the points P and Q are not

� We also claim that GRAMY’s procedure is sound, which means that if no proof exists, it will
not find one. This claim follows from the soundness of both forward and backward chaining.
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in the original problem configuration and hence needed to be constructed. Those
points could have been constructed as an intersection of two arcs about some points
in the problem figure that are not involved in the partial match for this postulate.
We have yet to see a problem that requires such a branch in the search, but we are
also unable to show that such branches always fail.

Assuming that the subprocedure is complete, it can be shown that the main
procedure is complete. Thus, we claim that GRAMY is “semi-complete.” The proof
follows. Let P be a problem to be proven. Let F0 be an original problem figure
for P , and Fi be the problem figure after the i-th construction has been made. Let
� = {a1, . . . , an} be a set of postulates given to the theorem prover sufficient to
prove P . Let PA(�, Fi) be a set of all possible ground instantiations of postulate
applications for all elements in � with respect to Fi . Since there are finitely many
elements in a problem figure, there are only finitely many instantiations for each
postulate; hence PA(�, Fi) is finite. If P has a proof Pr(P ) with k constructions,
then it must be a sequence of some ground instantiations in PA(�, Fk). Let Pr(P ) =
p1, . . . , pn (pi ∈ PA(�, Fk)) where the consequence of p1 unifies with the to-be-
proven goal specified in P , and the sequence is made by traversing a proof tree
depth-first.

In the case that P does not require construction at all, Pr(P ) must be found
because exhaustive forward chaining will eventually produce all the ground instan-
tiations for the postulates in PA(�, F0).

Assume that the proof procedure can find the proofs with k − 1 constructions
(k ≥ 1). We now prove that the proof procedure can also find the proofs with k

constructions. Let Pr(P ) = p1, . . . , pn (pi ∈ PA(�, Fk)) be a proof with k con-
structions. There must be at least one ground instantiation of a postulate application
in the proof that does not have a perfect match with F0. Let pj (1 ≤ j ≤ n) be
the first postulate application that satisfies this property, namely, pm has a perfect
match with F0 for ∀m such that 1 ≤ m < j . Since the top-level goal of the problem
P refers to the geometric elements in F0 and backward chaining is always done for
the elements in the problem figure, it is easy to see that the consequence of pj also
refers to the elements in F0. Hence, a partial match for a postulate application pj ,
which involves bindings for geometric elements referred in the consequence of pj ,
must be found by the search step 5 (construction) of the main procedure. If the
subprocedure is complete, it must produce constructions that generates F1. Now
the problem becomes one that requires k − 1 construction, which can be solved,
according to our inductive hypothesis. Hence the proof procedure must find a proof
of P with k constructions. This completes the proof for the semi-completeness of
the proof procedure.

4. Evaluation of GRAMY

This section shows the performance of GRAMY on the proofs with construction.
To compare GRAMY with other theorem provers, we collected 23 construction



22 NOBORU MATSUDA AND KURT VANLEHN

problems from the ten literature studies cited earlier. Few construction problems
have been addressed in the literature, possibly because of the difficult nature of
automated construction. Construction is also difficult for humans, so we found only
17 construction problems in two American and three Japanese textbooks (Aref
and Wernick, 1968; Coxford and Usiskin, 1971; Kyogaku-Kenkyusha, undated;
Matsushita, 1993; Shinshindo, 1993). Of those 17 problems from the textbooks, 8
were also used in the preceding studies. As a result, the problem corpus contains
32 construction problems.

Table I shows the performance of the theorem provers on our problem corpus. In
the table, a row corresponds to a problem, and a column corresponds to a textbook
or a study (including the current one denoted as GRAMY04). A label in a cell
shows a problem number specified in the textbook or the literature, or it shows
the page number where the problem is first mentioned. An italicized, label means
that the theorem prover failed to find a proof. A nonitalicized, bold label means
the prover did find a proof. The sixth column, GRAMY04, lists all 32 construction
problems used in the current study.

In Wong (1972), 50 problems are used. However, we have picked only 18 prob-
lems from his study because those are the only problems that do not deal with
sums, inequality, ratio, and coincident intersections. The same filtering policy was
applied to selection from the textbooks. All the other literature has the same number
of problems shown in Table I.

The problems are classified into three categories according to when construc-
tions should be made. (1) Twenty-six out of 32 problems can be solved by applying
a single construction in the first quiescence state, which is produced by exhaustive
forward chaining from the initial state. That is, the construction was made for the
top-level goal. (2) Five out of 32 problems, which are all italicized in Table I,
required multiple constructions applied for different subgoals. (3) Only one prob-
lem required backward chaining to replace the top-level goal with its immediate
subgoal before construction. The next few sections discuss each type of problem.

4.1. SINGLE CONSTRUCTION PROBLEMS

Table II shows results of the search for proofs on the problems that could be solved
by applying single construction to the top-level goal without transitive substitution.
As mentioned earlier, if GRAMY is to be used for tutoring, it must be able to gen-
erate all correct proofs. Hence the table consists of two parts: the search complexity
to find the first proof, and the search complexity to find all proofs. For the search
for the first proof, the table shows the depth of search (i.e., the number of cycles of
the main search procedure mentioned in Section 3.3 taken before the first proof is
found), the length of the proof (i.e., the minimum number of postulate applications
for a proof for the problem figure modified by the first successful construction), the
number of states expanded before the proof is found, the number of true proposi-
tions asserted by the time the proof is found (i.e., the number of statements in the
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Table I. Problems used for the evaluation
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Table II. Search complexity for proofs with single construction to the top-level goal

Problem First Proof All Proofs

Depth Length State Prop. Time All Suc. State Prop. Time

Const Const

P132 4 3 4 12 11 40 40 40 1342 76

P123 5 4 15 38 35 5 1 9 200 35

P109 5 5 198 91 322 76 3 149 2414 512

P127 5 3 296 70 1529 101 7 189 12252 2381

P101 5 5 313 72 1764 109 8 205 13075 2573

P117 6 9 48 178 54 17 1 33 1642 205

P116 6 6 130 79 109 76 1 151 3303 392

P112 6 8 23 79 151 181 14 348 21584 3908

P108 6 14 112 92 185 49 1 97 2137 432

P115 7 8 26 65 61 55 1 109 2785 329

P129 7 10 13 349 278 36 1 71 15095 5268

P128 7 11 93 103 770 146 2 290 20255 2951

P111 8 7 80 146 544 135 4 256 18229 3967

P131 8 6 492 63 2156 122 16 228 12880 2027

P142 9 10 13 127 84 95 7 183 16251 3356

P144 9 19 85 152 146 61 6 112 2691 472

deductive closure), and the CPU time in seconds to find the proof. For the search
for all proofs, the table shows the number of constructions found regardless of
whether they led to a proof, the number of constructions that led to a correct proof,
the total number of states expanded, the total number of true propositions asserted,
and the total CPU time in seconds.� The last three numbers aggregated searches for
all constructions found regardless of their correctness. As an example, Appendix B
shows successful construction for the problem P111 (an example of unsuccessful,
but reasonable, construction for P111 is shown in Figure 6).

As mentioned in Section 3.2.5, some problems require construction with tran-
sitive substitution. The current version of GRAMY first applies the construction
procedure without transitive substitution; only when no proof is found does it apply
construction with transitive substitution. Since the number of possible construc-
tions with transitive substitution could be large, this trial-and-error approach could
be very costly. Table III shows search complexities on those problems. The number
in parentheses shows the number of successful constructions. In general, a partial
match for construction with transitive substitution has more variables assigned to
NIL. Hence the number of possible constructions made by transitive substitution is
bigger than the one by normal construction. As shown in the table, the ratio of suc-

� The current version of GRAMY is written with Common LISP running on an Intel Pentium-III
600 MHz processor.
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Figure 6. A “reasonable” but unsuccessful construction for P111.

Table III. Search complexity for proofs with single construction by transitive substitution

Normal Construction Construction with Transitive Substitution

Problem Length #Const #State #Prop. Time Length #Const #State #Prop. Time

P126 0 2 5 24 9.39 3 285 (5) 5 79 270.56

P139 0 0 3 55 1.37 4 510 (1) 36 175 800.65

P130 0 1 6 89 28.56 5 389 (2) 8 91 552.22

P110 0 2 7 42 15.98 6 293 (4) 9 94 349.77

P102 0 0 3 467 1.48 7 23 (6) 9 1087 314.01

P105 0 2 5 12 2.97 13 184 (184) 52 49 78.27

cessful to unsuccessful constructions is generally quite low. Nonetheless, GRAMY
found proofs for those problems in reasonable time. To find all proofs, however,
GRAMY should try transitive substitution on all problems, even those where other
proofs are found without transitive substitution. We have not yet experimented with
this extension.

4.2. MULTIPLE CONSTRUCTION PROBLEMS

Five problems in the corpus require multiple constructions. GRAMY could solve
those problems given unlimited resources (i.e., memory space and time). How-
ever, because of inefficient memory management in the current implementation,
GRAMY could not find a proof for these and only these problems. For example,
problem P103 needs three constructions for three consecutive subgoals. For the first
goal, 153 constructions were found. For those constructions, GRAMY expanded a
total of 3,687 immediate states. GRAMY crashed when searching for construc-
tions for the third subgoal from the top-level goal. We believe that this is a fixable
technical problem, not a fatal theoretical problem.
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Table IV. Search complexity for proofs with single construction by transitive substitution

Problem Length #Count #Prop. Time

P143 30 78 220 1320

4.3. CONSTRUCTION FOLLOWING BACKWARD CHAINING

Problem P143 requires backward chaining prior to a construction. Table IV shows
the search complexity on this problem. Construction was carried out immediately
following one backward deduction applied at the first quiescence state. There are
four disjunctive subgoals for this backward deduction, and 20, 20, 38, and 0 con-
structions were found for each of the subgoals (hence, 78 total constructions as in
the table).

Since P143 is the only problem in our corpus that requires backward chain-
ing prior to construction, it is hard to evaluate the effectiveness of GRAMY on
this type of problem. One would ask whether, since backward chaining may be
applied multiple times, the search might explode. In such cases, GRAMY can
iteratively increase the depth at which construction is carried out. For each iteration
GRAMY can apply depth-first iterative-deepening search to find a proof. Thus, we
believe that GRAMY is effective for constructions that follow multiple backward
chaining.

4.4. COMPLEXITY OF DIAGRAM MATCHING

Matching a DS diagram to a problem figure is complex. Suppose a problem figure
has P points, S segments, A angles, R rays, T triangles, and L lines. For a postulate
that has a DS diagram with p points, s segments, a angles, r rays, t triangles,
and l lines, there are Pp × Ss × Aa × Rr × T t × Ll possible assignments. This
number tends to run into astronomical figures. For example, the triangle-congruent
postulate has 6 points, 6 segments, 6 angles, 2 triangles, and 12 rays. For P111,
which has 8 points, 21 segments, 30 angles, 11 triangles, and 26 rays, the number
of possible assignments with the triangle-congruent postulate is 1041.

As mentioned earlier, GRAMY uses a constraint satisfaction algorithm to search
such huge spaces effectively. Table V shows the number of partial matches found
for each DS diagram with problems regarding the equality of segments. The first
six columns are the numbers of elements in the problem figure (Points, Segments,
Angles, Triangles, Rays, and Lines). The remaining columns show the number of
matches per DS diagram. As can be seen in the table, the diagram-matching module
works effectively.
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Table V. The number of matches for problems regarding equality of segments

No. P S A T R L TRI- RIGHT- SEGMENT- RECTANGLE- RIGHT- RHOMBUS TRI-

CONG TRI- SUM DIAGONAL TRI- MIDPOINT-

CONG MEDIAN LAW

P132 4 4 4 0 8 0 252 34 0 0 0 0 0

P144 4 5 8 2 10 0 276 56 12 0 0 0 0

P109 4 6 8 3 10 1 252 87 12 1 2 6 0

P131 6 11 19 4 18 2 582 106 12 2 3 4 0

P108 6 12 15 4 16 4 228 46 34 0 0 0 0

P112 7 16 20 8 20 5 552 68 34 70 6 18 36

P101 7 18 30 12 24 4 678 68 12 2 3 4 0

P127 7 18 30 12 24 4 654 68 12 2 3 4 0

P111 8 21 30 11 26 6 546 56 34 46 5 18 40

5. Conclusion

We have implemented an efficient and semi-complete procedure for proofs with
construction. Goldstein (1973) and Anzai et al. (1979) appear to have used the
same main procedure as GRAMY, namely, alternating forward chaining with a
selection of a useful postulate as the subject of construction. Their work may have
been based on Wong’s work (1972) that proposed a search for a desired postulate in
both forward and backward chaining. These authors appear not to have noticed that
the main procedure is complete, assuming the completeness of the subprocedure.
No previous provers have been proven to be complete for theorem proving with
construction. GRAMY is not complete either, but we have succeeded in proving its
semi-completeness, and Section 3.4 localizes the lack of completeness to a single
subprocedure, thus setting the stage for further work. Moreover, the results from an
empirical evaluation show that GRAMY works on most of the problems gathered
from textbooks and the literature. This section summarizes the lessons learned from
GRAMY and discusses future issues.

5.1. WHY GRAMY WORKS

We attribute the success of GRAMY to several features, discussed below.

5.1.1. Use of Exhaustive Forward Chaining

Because it does not cost much to apply exhaustive forward chaining to calculate the
deductive closure, finding a proof within a fixed problem figure is not costly either.
Thus, most of the computation is spent finding possible constructions by depth-first
search. We note, however, that the proof procedure guarantees exhaustive forward
chaining to stop only because arithmetic operations are excluded. Introducing arith-
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metic operations no longer guarantees reaching a quiescence state (e.g., one can
divide a segment infinitely many times).

5.1.2. Heuristics for Construction

GRAMY differs from other provers in the way missing segments are constructed
without relying on ad hoc heuristics. Thus, GRAMY has the power to find more
constructions. For example, Goldstein (1973) claims that only two constructions
for P111 are based on the heuristics applied. GRAMY found 135 successful and
unsuccessful constructions, including the one shown in Figure 6. Although this
construction does not lead to a proof, it is just as reasonable as the other four
successful constructions shown in Appendix B at the time it was made. This kind
of deficit in completeness of a construction procedure affects the completeness of
the whole theorem prover as well.

5.1.3. Use of Diagrams for Geometry Theorem Proving

Beside the use of diagrams as search control for the backward inference, as done
by Gelernter (1959) and many other provers, another advantage of using diagrams
is that it localizes necessary information into a single knowledge piece. Larkin and
Simon (1987) argue that due to the dense information embedded in a diagram, us-
ing diagrammatic representation requires less effort to draw information necessary
to make inference.

The diagram configuration model developed by Koedinger and Anderson (1990)
is based on this principle. In this model, a set of geometric postulates that shares
the same geometric configuration is represented as a single piece of knowledge
called a diagram configuration schema. A diagram configuration schema consists
of a diagram and a set of propositions to be held in the diagram. A proposition that
is a sufficient condition of all other propositions is called a whole-statement. The
propositions that are not whole-statements are called part-statements. A diagram
configuration schema also has all possible combinations of the part-statements rep-
resenting the conditions of the whole-statement to be a true proposition. When any
of the conditions is satisfied, then the whole-statement and all other part-statements
in the schema are asserted as the true propositions. This collective deduction plays
a central role to improve the efficiency of search.

GRAMY uses the same kind of inference procedure and knowledge repre-
sentation implemented as the diagrammatic schema (DS). A difference is that
GRAMY’s knowledge representation schema has more accumulative power than
the one developed by Koedinger and Anderson. This is because GRAMY’s di-
agrammatic schema does not discriminate between the whole-statement and the
part-statements; that is, GRAMY’s knowledge representation does not require any
single proposition to be the sufficient condition of all other propositions. Instead, all
possible deductions relating to a single diagram are combined into a single schema
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whether they share a single condition or not. Consider, for example, the midpoint
law that does not have a single proposition corresponding to a whole-statement.�

Besides the expressive power of the diagrammatic schema used in GRAMY,
a major difference is in the way they are used; GRAMY uses a partial match of
the diagram to carry out construction. Although we agree with Koedinger and An-
derson’s opinion that the diagram configuration model is “particularly well-suited
for adding a construction capability” (1990, p. 532), we further claim that finding
plausible construction requires an intensive search, and hence implementing an
effective search control is essential for successful construction.

5.1.4. Construction with Reference to a Free Segment

We realized that construction with a reference to a free segment was neglected by
preceding studies. All of them discuss only how to construct a missing element by
considering the geometric structure of the desired postulate per se. The empirical
evaluation revealed that construction with reference to a free segment is essential
for some problems because there does not seem to be a proof other than the ones
produced by GRAMY with a construction with reference to a free segment.

5.2. GRAIN SIZE OF THE POSTULATES

Discussions in the preceding sections depend on a set of postulates given to the
theorem prover. For example, suppose a theorem prover eventually found a proof
with multiple constructions. By adding the problem’s premises, the goal, and the
final problem figure to the prover as a postulate, the prover can find the same proof
with single construction applied at the first quiescent state. For example, GRAMY
could solve P125 by single construction if it were given the incenter theorem (“all
three bisectors of angles in a triangle meet at a single point”) as a DS where the
three perpendicular segments from the incenter appear in the DS diagram.

Although adding proven problems as the postulates is quite natural in axioma-
tized systems like Euclidean geometry, we must make a good balance among the
grain size of postulates and a load for students to learn those postulates. The exper-
iments showed that the postulates currently implemented in GRAMY are sufficient
to prove many problems used in textbooks. Hence we apparently need to add more
specific postulates only to prove those problems that require multiple constructions.

5.3. IMPLICATIONS FOR GEOMETRY EDUCATION

We conclude that GRAMY is adequate as a building block for a tutoring system on
theorem proving for several reasons:

� The midpoint law could be implemented as a single diagrammatic configuration schema with
a geometric statement, say, the-midpoint-law-is-held-in-�ABC as a whole-statement. However, that
kind of statement would never appear in a proof.
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(1) GRAMY is skillful enough to solve all arithmetic-free construction problems
that appear in some school textbooks.

(2) The deductions used in its proofs employ the Euclidean axiom system that is
widely used in current school curricula.

(3) As a result, the proofs output by GRAMY are natural for students who are
learning Euclidean geometry.

Since GRAMY can generate most of the solutions for a given problem, one can
build a model tracing tutor that can recognize a student’s proof steps and provide
appropriate feedback. For each problem, a model tracing tutor has ideal solutions
required to find a solution. It compares the student’s problem-solving steps to the
steps taken in ideal solutions. For geometry theorem proving, the ideal solutions
contain all proofs that instructors would accept, which GRAMY can create in a
reasonable amount of time.

Even though GRAMY draws inferences that are familiar to students, the proof
procedure of GRAMY may be too complex for students to carry out despite the fact
that it can be simply described (cf. the description of Section 3.3). For instance,
students can hardly be expected to keep a queue of search states. Nonetheless,
students could explore the search space generated by GRAMY and receive feed-
back whenever they start to head down a dead-end path. This pedagogical tactic is
used by Andes (VanLehn et al., 2002), a successful intelligent tutoring system for
physics based on a semi-complete physics theorem prover.

5.4. FUTURE WORK

One major task is to determine the completeness of the subprocedure that gen-
erates constructions for a useful postulate. Another task is to find some kind of
search control that will allow GRAMY to solve the multiple construction problems
efficiently without harming its completeness. It would also be an interesting issue
to make GRAMY capable of proving that existence of the points constructed. We
would like to extend GRAMY to solve geometry problems that involve arithmetic
operations. Lastly, an intelligent tutoring system for geometry theorem proving
must be built with GRAMY, and its educational effectiveness must be examined
with appropriate students.
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Appendix A. Construction Problems Used in the Evaluation

This appendix shows only the selected construction problems that are mentioned
in this article.

Table VI. Selected construction problems

P103 Given: AB = CD
AE = CE
BF = DF

Goal: � AYE = � CXE

P108 Given: AB = AC
DE = EF

Goal: BD = CF

P111 Given: DQ = BQ
AP = CP
CD‖AB

Goal: AM = DM

P123 Given: AB = CD
� ABC = � DCB

Goal: � BAD = � CDA

P125 Given: � ABE = � CBE
� BCF = � ACF

Goal: � BAQ = � CAQ

P143 Given: Parallelogram ABCD
BN‖AC
DN ⊥ AC

Goal: PQ = BP
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Appendix B. Example of Construction

Table VII. Successful construction for Problem P111

Construction:
1. Connect D and P
2. Extend DP to AB and plot X
3. Connect M and X

Useful Postulate:
Triangle congruent theorem
(�AXM ≡ �DXM)

Construction:
1. Connect A and Q
2. Extend DC
3. Extend AQ and plot X

Useful Postulate:
The midpoint-connector theorem
(�AXC)

Construction:
1. Connect D and P
2. Extend DP to AB and plot X

Useful Postulate:
The midpoint-connector theorem
(�DAX)

Construction:
1. Connect D and P
2. Extend DP to AB and plot X
3. Connect X and M
4. Extend CD
5. Extend XM to the extension of CD and plot Y
6. Connect A and Y

Useful Postulate:
The rhombus theorem
(Rhombus YAXD)
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