
B. Woolf et al. (Eds.): ITS 2008, LNCS 5091, pp. 111–121, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Why Tutored Problem Solving May be Better
Than Example Study: Theoretical Implications

from a Simulated-Student Study*

Noboru Matsuda1, William W. Cohen2, Jonathan Sewall1,
Gustavo Lacerda2, and Kenneth R. Koedinger1

1Human-Computer Interaction Institute
2Machine Learning Department

Carnegie Mellon University
5000 Forbes Ave., Pittsburgh PA 15213 USA

{mazda,wcohen,sewall,gusl,koedinger}@cs.cmu.edu

Abstract. Is learning by solving problems better than learning from worked-out
examples? Using a machine-learning program that learns cognitive skills from
examples, we have conducted a study to compare three learning strategies:
learning by solving problems with feedback and hints from a tutor, learning by
generalizing worked-out examples exhaustively, and learning by generalizing
worked-out examples only for the skills that need to be generalized. The results
showed that learning by tutored problem solving outperformed other learning
strategies. The advantage of tutored problem solving was mostly due to the er-
ror detection and correction that was available only when skills were applied
incorrectly. The current study also suggested that learning certain kinds of con-
ditions to apply rules only for appropriate situations is quite difficult.

Keywords: Intelligent Authoring System, Simulated Student, Programming by
Demonstration, Machine Learning, Cognitive Tutor.

1 Introduction

SimStudent is a machine-learning agent that learns cognitive skills by generalizing
solutions demonstrated [1] and also by being tutored as we describe in this paper. Our
original motivation to develop SimStudent was to automate cognitive modeling to
author a Cognitive Tutor that deploys model tracing to provide individualized feed-
back and contextualized help [2]. To perform model tracing, the Cognitive Tutor
needs a cognitive model that represents domain principles. However, cognitive model-
ing is a labor-intensive task that requires significant knowledge and experience in
cognitive task analysis and AI-programming. Embedded into Cognitive Tutor Author-
ing Tools (CTAT [3]), SimStudent acts as an intelligent building block that allows
authors to perform authoring by demonstration, where authors merely demonstrate

* The research presented in this paper is supported by the National Science Foundation Award

No. REC-0537198. This work was also supported in part by the Pittsburgh Science of Learn-
ing Center, which is funded by the National Science Foundation Award No. SBE-0354420.

112 N. Matsuda et al.

how to solve problems (correctly and incorrectly) instead of writing a cognitive model
by hand. SimStudent generalizes demonstrations and create a set of production rules
that reproduce the problem-solving steps demonstrated.

A critical research question addressed in this paper is about the efficiency of
SimStudent: How can SimStudent be taught most effectively?

Originally, SimStudent was a “passive” learner in the sense that SimStudent at-
tempted to generalize every problem-solving step demonstrated, but did not attempt to
perform problem-solving steps on its own. SimStudent could reduce the learning load
by selectively choosing certain steps to generalize; for instance, generalizing a step only
when SimStudent does not have a production rule that reproduces the step demon-
strated. Assuming that applying an existing skill is easier than learning a new skill, this
learning strategy might require a relatively shorter learning time to achieve the same
quality of cognitive model. A third possibility is that SimStudent could actively solve
problems, rather than explaining demonstrations, and get feedback. Since the author will
see SimStudent performing actions, which provides a chance to explicitly correct errors,
this tutoring strategy might outperform passive or the selective learning strategies.

In this paper, we compare three learning strategies to answer the following re-
search question: Which learning strategy is better in terms of efficiency of training
and quality of resulting cognitive models? Answering this question is not only impor-
tant for authoring purposes, but it may also provide us theoretical insights into under-
standing human learning by inspecting SimStudent’s learning processes and learning
outcomes, which are not easily attainable in human subjects.

2 SimStudent: A Machine-Learning Agent You Can Teach

An actual image of the Cognitive Tutor used in the current study is shown in Fig. 1.
Suppose that an author is trying to build a Cognitive Tutor for Algebra equation solv-
ing. The author has just built the Tutor interface shown in Fig. 1 by using CTAT.
Now, the author launched SimStudent to create a cognitive model for equation solv-
ing by using the Tutor interface and solves a few problems.

2.1 An Example Cognitive Tutor: Algebra Equation Tutor

In this tutor, equations are represented with a mathematical operation to transform a
given equation to another form. To transform an equation, an operation must be speci-
fied first, followed by the left-hand and right-hand sides of the resultant equation
being entered in the adjacent row. Fig. 1 shows that the author has decided to “add -1”
to both sides, and the left-hand side has just been entered. In sum, a single equation-
solving step (e.g., transforming “3x+1=x+4” into “3x=x+3”) is modeled as three
steps – (1) selecting an operation for transformation, (2) entering an expression for the
left-hand side, and (3) for the right-hand side. The first step is called transformation
step, and the last two steps are called type-in steps. In this paper, the word “step”
means one of these three steps. An operation for transformation must be specified
prior to entering any expressions. The order of entering sides can be arbitrary, but
both sides must be entered before selecting the next operation. The skills to select an
appropriate operation are called transformation skills, and the skills to enter left- and
right-hand sides are called type-in skills.

 Why Tutored Problem Solving May be Better Than Example Study 113

Fig. 1. The Tutor Interface for the Algebra I CTAT Tutor. Students are supposed to enter an
operation for transformation first in the column labeled as “Skill Operand.” Then corresponding
expressions for the left- and right-hand sides must be entered.

2.2 Learning Production Rules by Demonstration

Each of the production rules represents an individual skill to perform a particular step.
Performing a step is modeled as generating a tuple that consists of an action taken
(e.g., “entering some text”), a place that was selected to take the action (e.g., “the
second cell in the first column”), and the value that was input as a result of taking the
action (e.g., the string “3x”). Those are called action, selection, and input. A tuple of
<selection, action, input> is called an SAI tuple.

A production rule models a particular skill in terms of what, when, and how to gen-
erate a particular SAI tuple. In other words, a production rule shows that “To perform
a step, first look at X and see if a condition Y holds. If so then do Z.” The part of the
production rule representing X (what) is called the focus of attention that specifies
particular elements with certain constraints like “the cell in the table” shown in the
Tutor interface. The part of the production rule representing Y (when) is called the
feature tests. The feature tests represent a set of conditions that must hold about the
focus of attention – e.g., the two cells must be in the same row, the expression in the
cell must be polynomial, etc. Together, the focus of attention and the feature tests
compose the left-hand side (i.e., the condition part) of a production rule. The right-
hand side (i.e., the action part) of a production rule contains a sequence of operations
that generates the value of the input in the SAI tuple.

Prior to learning, SimStudent is given a hierarchical structure of the elements in the
Tutor interface with which to express the constraints among the focus of attention, a
set of feature predicates with which to express feature tests, and a set of operators
with which to compose a sequence of operations. SimStudent has a library of feature
predicates and operators that are general for arithmetic and algebra, but the authors
might need to write domain-specific background knowledge to use SimStudent for
other domains.

When demonstrating a step, the author first needs to specify the focus of attention
by double-clicking the elements on the Tutor interface. Then he/she performs a step,
namely, takes an “action” upon a “selection” with an appropriate “input” value. Fi-
nally, the author needs to label the demonstrated step. This label is called the skill
name.

When a step is demonstrated for a particular skill K with a focus of attention F and
an SAI tuple T, the pair <F, T> becomes a positive example of the skill K. The pair
<F, T> also becomes a negative example for all other skills. This indicates to “apply

114 N. Matsuda et al.

skill K to carry out the SAI tuple T when you see the focus of attention F, but do not
apply any skills other than K when you see F.” We call this kind of negative examples
the implicit negative examples as opposed to the explicit negative examples used for
tutored problem solving, which is described in the next section. Once a positive ex-
ample is acquired, it stays as positive throughout a learning session. On the other
hand, an implicit negative example for a skill would later become a positive example
if the same focus of attention is eventually used to demonstrate that skill.

When a new positive or negative example is added for a particular skill, SimStu-
dent learns the skill by generalizing and/or specializing the production rule for the
skill so that it applies to all positive examples and does not apply to any negative
examples. The focus of attention is generalized so that they are consistent with all
instances of the focus of attention appearing in the positive examples. An example
generalization is to shift from “first column” to “any column.” Feature tests are gen-
eralized and/or specialized so that they cover all positive examples and no negative
examples that is done by Inductive Logic Programming [4] in the form of Foil [5].
The operator sequence is generalized so that it generates “input” values from the fo-
cus of attention for all SAI tuples in the positive examples.

2.3 Learning Strategies

The original version of SimStudent always learns skills whenever a step is demon-
strated by generalizing existing skills or introducing a new skill. This can be seen as a
model of human students diligently learning skills from worked-out examples, regard-
less of what they already can do (although it sounds too idealistic).

As an interesting twist (and a step towards a more realistic model), the author can
also have SimStudent try to “explain” the step demonstrated, by identifying a previ-
ously learned skill that replicates the step demonstrated, and having SimStudent learn
skills only when it fails to explain the step. This is analogous to human students learn-
ing from worked-out examples while self-explaining the solutions.

Furthermore, the author can instead tutor SimStudent on how to solve problems.
The author provides problems to SimStudent, lets SimStudent solve them, and pro-
vides feedback on each of the attempts made. When SimStudent makes an error, the
author can provide negative feedback, which will motivate SimStudent to accumulate
an explicit negative example– i.e, it will learn when not to apply a skill because it
produces an incorrect output. When SimStudent has no rules indicating how to per-
form a step, the author provides a “hint” on what to do next; this hint is just a demon-
stration of how to perform the step. This is a model of learning by tutored problem
solving.

In summary, we implemented these three learning strategies for SimStudent:
Diligent Learning – provides demonstrations on every step and SimStudent learns

skills each time a step is demonstrated.
Example Study – provides demonstrations on every step and SimStudent attempts

to identify a production rule that reproduces the step demonstrated. Only when
the attempt fails, does SimStudent learn skills.

Tutored Problem Solving – provides SimStudent with problems to solve. For each
step, SimStudent is asked to show all rule applications that can be done. For
each of the rule applications, SimStudent gets flagged feedback from an oracle,

 Why Tutored Problem Solving May be Better Than Example Study 115

which merely tells the correctness of the rule application. Correct rule applica-
tions become positive examples and incorrect ones become negative examples.
When there is no correct rule application for a step, SimStudent asks a what-to-
do-next hint to the oracle. The oracle then demonstrates to SimStudent how to
perform the step.

The oracle for the Tutored Problem Solving can be either a human or another com-
puter program. In the current study, we used the commercially available Cognitive
Tutor, Carnegie Learning Algebra I Tutor, as the oracle. The details follow.

3 Learning Strategy Study

This section describes a study conducted to evaluate the efficiency of each of the
three learning strategies described in section 2.3.

3.1 Method

Three versions of SimStudent were implemented – one for each of the three learning
strategies. Each SimStudent was trained with 20 problems and tested with ten prob-
lems. Since hundreds of steps must be demonstrated and tested to complete the study,
it was not realistic to ask human authors to be involved in the study. Instead, we used
pre-recorded and machine-generated demonstrations as described below.

The pre-recorded demonstrations were collected from a previous classroom study
conducted in the PSLC LearnLab.1 In the LearnLab study, the Carnegie Learning
Algebra I Tutor was used in an urban high-school algebra class. The high-school
students were asked to use the Algebra I Tutor individually. The students’ activities
were logged and stored into a large database, called DataShop.2 We then extracted
problems and human students’ correct steps from DataShop for the current study. An
entire (correct) solution for a particular problem made by a particular student became
a single training problem for the Example Study condition and the Diligent Learning
condition. The problems were randomly selected from the DataShop data.

For the Tutored Problem Solving condition, SimStudent was tutored by the Carne-
gie Learning Algebra I tutor. That is, when SimStudent got stuck, SimStudent asked a
what-to-do-next hint to the Carnegie Learning Algebra I tutor, and the Carnegie
Learning Tutor provided a precise instruction for what to do in the form of the bot-
tom-out hint, which provides the same information as the SAI tuple. Whenever
SimStudent performed a step, each of the rule applications was sent to the Carnegie
Learning Algebra I Tutor to get a flagged feedback.

There were five disjoint sets of training problems (i.e., the total of 100 training
problems). Thus, there was a total of 15 experimental sessions (five training sets for
each of the three learning-strategy conditions).

Each time SimStudent was trained on a new training problem, the production rules
learned were tested with the ten test problems. The same set of test problems was
used for all of the 15 experimental sessions. The test problems were also randomly
collected from the LearnLab study. For each of the steps in a test problem, we asked

1 www.learnlab.org
2 www.learnlab.org/technologies/datashop

116 N. Matsuda et al.

SimStudent which production rules can be fired. Since we wanted to know how
poorly SimStudent solves problems in addition to how well, we recorded all possible
rule applications for each step. More precisely speaking, for each step, we enumerated
all production rules whose left-hand conditions hold. The correctness of a rule appli-
cation was evaluated by the Carnegie Learning Algebra I Tutor. The steps performed
by SimStudent were coded as correct if there was at least one correct rule application
attempted. Otherwise, the steps were coded as missed.

3.2 Evaluation Metrics

We define a dependent variable, called the Step score, that represents how well the
production rules learned were applied on individual steps in the test problems. A step
is scored as zero if it was missed (i.e., no correct rule application was made – see the
definition above). Otherwise, a step was scored as a ratio of the number of correct rule
applications to the total number of rule applications applicable to that particular step.
For example, if there were 2 correct and 6 incorrect rule applications for the step, then
the Step score for that step is 0.25. The step score ranges from 0 (no correct rules
applicable) to 1 (no incorrect rules applicable, and at least one correct rule applies).
We define the Problem score as the average Step score for all steps in a test problem.

In general, there are several correct and incorrect rule applications available for
each step. Since SimStudent does not have any strategy to select a single rule among
these conflicting rule applications, the Step score can be seen as a probability that the
step is performed correctly at the first attempt.

4 Results

4.1 Overall Learning Performance

Fig. 2 shows average Problem Score for each learning-strategy condition. The X-axis
shows the number of training problems learned. The Problem score was aggregated
across the ten test problems and the five training sets (i.e., average of the 50 Problem
scores for each condition). All three conditions showed an overall improvement on
the Problem score when more training problems were learned.

The three learning conditions improved equally on the first 8 problems. After that,
the Tutored Problem Solving condition outperformed other conditions. There was a
point, for all three conditions, where the improvement of the performance on the test
problems diminished to almost nothing. After training on all 20 problems, the average
Problem score was 0.78 for the Tutored Problem Solving, 0.72 for the Diligent Learn-
ing, and 0.66 for the Example Study. ANOVA revealed a main effect of the learning
strategy; F=7.68, p<0.001. The paired t-tests showed that all three learning-strategy
conditions are significantly different from each other. The Tutored Problems-Solving
condition outperformed the other two conditions on the Problem score. The Example
Study was the least efficient learning strategy in terms of the Problem score.

To further investigate why the Tutored Problem Solving condition led to better
learning, we broke down the Step score (the basis of the Problem score) into two
scores: (1) the Precision score showing the ratio of the number of correct to incorrect
rule applications for a step, and (2) the Recall score showing the ratio of the number
of steps that were performed correctly to the total number of steps in a test problem.

 Why Tutored Problem Solving May be Better Than Example Study 117

Fig. 2. Overall improvement of the Problem scores. The X-axis shows the number of training
problems. The Y-axis shows the average Problem scores on the ten test problems, aggregated
across five training sets.

Fig. 3. Average Precision scores. The X-axis shows the number of training problems learned by
the time the Precision score was measured.

Fig. 3 shows the average Precision score for the ten test problems aggregated across
the training sets. On the 20th training problem, there was a main effect of the learning
strategy; F=24.49, p<0.001. The paired t-tests confirmed that all three conditions are
significantly different from each other. The Tutored Problem Solving condition outper-
formed other conditions on the Precision score. This means that the production rules
learned by Tutored Problem Solving were more likely to produce correct rule applica-
tions than the rules learned by other learning strategies.

Fig. 4 shows the average Recall score. ANOVA showed a main effect of the learn-
ing condition; F=7.68, p<0.001. The paired t-tests showed that the Tutored Problem
Solving was significantly inferior to the other two conditions (both t=2.01, p<0.001),
but the difference between Example Study and Diligent Learning was not significant.
The Tutored Problem Solving condition was significantly inferior to other two

118 N. Matsuda et al.

Fig. 4. Average Recall score. The X-axis shows the number of training problems.

conditions, meaning the Tutored Problem Solving condition did not learn as many
production rules necessary to solve test problems as other conditions did. On average,
the Tutored Problem Solving condition learned the fewest production rules (11.6), and
the Diligent Learning condition learned the most (21.0). The Example Study condi-
tion learned 16.0 production rules on average.

4.2 Types of Errors

To see if there were any differences in the kinds of errors made by each learning con-
dition, we categorized the errors appeared on the test problems. Regardless of the
learning strategy, once the learning was saturated (i.e., after learning ten problems for
Diligent Learning and Example Study, and 13 problems for Tutored Problem Solv-
ing), there were only two types of errors: (1) Step-Skipping error – attempting to apply
a transformation skill without completing previous type-in steps, (2) No-Progress
error – applying a transformation skill that does not make the transformed equation
any closer to a solution (see section 0 for the definition of steps and skills).

An example of a Step-Skipping error is to apply another transformation skill to the
situation shown in Fig. 1, and enter, say, “divide 3” into the rightmost cell on the sec-
ond row when the middle cell (right-hand side of the equation) is left blank.

An example of a No-Progress error is to “subtract 2x” from 2x+3=5. This is a
mathematically valid step, but it does not make the resultant equation any closer to a
solution.

Both Step-Skipping and No-Progress steps are considered as a wrong step by the
Carnegie Learning Algebra I Tutor. Thus, SimStudent received negative feedback on
both of these erroneous steps during tutored problem-solving.

No-Progress errors appeared in all three conditions. Quite interestingly, there were
no Step-Skipping errors observed for the Tutored Problem Solving condition. Why?
We hypothesized that only Tutored Problem Solving had a chance to revise incorrect
skills during training, by making a Step-Skipping error and receiving negative feed-
back, which allowed SimStudent to accumulate negative examples to correctly learn
LHS conditions. Namely, making an explicit error and getting a flagged feedback on
it (which, by definition, merely tells the correctness of the step) should have positively

 Why Tutored Problem Solving May be Better Than Example Study 119

contributed to learning. To test this hypothesis, we controlled the creation of negative
examples for the Tutored Problem Solving condition, which is described in the next
section.

4.3 Control Experiment with No Explicit Negative Feedback

We have modified the Tutored Problem Solving condition, so that it does not generate
negative examples for incorrect rule applications. SimStudent still received negative
feedback for incorrect rule applications, thus another attempt was made to perform a
step. This means that the modified version of Tutored Problem Solving still had the
same amount of positive examples during training as the original version.

With this modification, the Tutored Problem Solving condition made the same
Step-Skipping errors as the other conditions. Thus, it was the explicit negative exam-
ples obtained by incorrect rule applications that caused the high Precision score for
the Tutored Problem Solving condition.

This modification did not affect the appearance of the No-Progress errors – having
more negative examples did not prevent skills from being incorrectly generalized and
making No-Progress errors.

5 Discussion

5.1 The Impact of Negative Feedback on Learning

The most important finding in the current study is that the most effective way to train
SimStudent is Tutored Problem Solving. It is crucial for successful learning to allow
SimStudent to commit itself to apply its own skills to solve problems – this is a natu-
ral way to give SimStudent negative feedback explicitly for the incorrect skill applica-
tions so that incorrect skills are appropriately generalized.

It is interesting to see that Example Study and Diligent Learning are superior
to Tutored Problem Solving at some point on the fifth and sixth training problems
(Fig. 2). This was mostly due to the high Recall scores – Example Study and Diligent
Learning tend to learn more rules that correctly perform steps. However, at the same
time, they also have a tendency to learn incorrect rules as well. Those incorrect rules
can only be eliminated through explicit negative feedback.

Despite the importance of the negative examples, programming by demonstration
in most cases only produces positive examples. Kosbie and Myers [6] emphasized the
issue of program execution in the shared common structure of programming by dem-
onstration. We further emphasize the importance of feedback about incorrect program
execution in providing explicit negative examples. Interactive Machine Learning [7]
is a good example of successful application of programming by demonstration where
the learning agent can acquire negative examples explicitly through program execu-
tion.

5.2 Difficulty in Rule Induction

Another important lesson learned is the difficulty of inductive learning. It turned out
that learning appropriately generalized rules that do not generate No-Progress errors is

120 N. Matsuda et al.

challenging in this particular domain. Despite having explicit negative feedback on
the No-Progress errors during training, the Tutored Problem Solving condition still
made the No-Progress errors on the test problems.

Since No-Progress errors always generate mathematically valid steps (meaning, the
RHS operator sequence is correct), the challenge is in learning LHS conditions –
learning when to apply a particular rule is more difficult than learning how to per-
form a step. Since it is beyond the scope of the current paper, we do not further dis-
cuss this issue, but now we have narrowed down the difficulty of inductive learning to
learning conditions for when to apply rules. This must be addressed further in future
studies.

6 Conclusion

The empirical study showed that tutored problem-solving results in learning produc-
tion rules more accurately than learning from examples for SimStudent’s learning.
Thus, for authoring purposes, tutoring SimStudent instead of demonstrating solutions
may be a better form of using SimStudent as an aid to author Cognitive Tutors, as-
suming that providing feedback does not cost too much for the authors. In the 20
training problems, each skill was demonstrated 13.5 times on average for Diligent
Learning and Example Learning, and 2.8 times for Tutored Problem Solving. For the
Tutored Problem Solving, the tutor provided positive feedback 14.1 times and nega-
tive feedback 3.5 times on average throughout the 20 training problems. Future stud-
ies on the authoring cost analysis are necessary.

That tutored problem solving is significantly inferior to other learning conditions
on the Recall score must be studied further. What about starting from the example
study first and shifting to tutored problem solving later? This is a well-known learning
strategy that is effective for human students [8]. All three conditions tied on the Step
score for the first few training problems, and still the example study conditions were
better on the Recall score on those steps. Thus, starting from an example study would
allow SimStudent to acquire production rules more quickly, and switching to tutored
problem-solving would provide good opportunities to correct these rules.

The current study also provides insight into future studies on inductive learning.
Although, SimStudent has characteristics that are essentially different from human
learning, finding out why some features are more difficult to learn than others would
open the door for future studies on human and machine learning.

References

1. Matsuda, N., Cohen, W.W., Koedinger, K.R.: Applying Programming by Demonstration in
an Intelligent Authoring Tool for Cognitive Tutors. In: AAAI Workshop on Human Com-
prehensible Machine Learning (Technical Report WS-05-04), pp. 1–8. AAAI association,
Menlo Park (2005)

2. Koedinger, K.R., Corbett, A.: Cognitive Tutors: Technology Bringing Learning Sciences to
the Classroom. In: Sawyer, R.K. (ed.) The Cambridge Handbook of the Learning Sciences,
pp. 61–78. Cambridge University Press, New York (2006)

 Why Tutored Problem Solving May be Better Than Example Study 121

3. Koedinger, K.R., Aleven, V.A.W.M.M., Heffernan, N.: Toward a Rapid Development Envi-
ronment for Cognitive Tutors. In: Hoppe, U., Verdejo, F., Kay, J. (eds.) Proceedings of the
International Conference on Artificial Intelligence in Education, pp. 455–457. IOS Press,
Amsterdam (2003)

4. Muggleton, S., de Raedt, L.: Inductive Logic Programming: Theory and methods. Journal of
Logic Programming 19-20(Supplement 1), 629–679 (1994)

5. Quinlan, J.R.: Learning Logical Definitions from Relations. Machine Learning 5(3), 239–
266 (1990)

6. Kosbie, D.S., Myers, B.A.: Watch what I do: programming by demonstration. In: Cypher,
A. (ed.) Watch what I do: programming by demonstration, pp. 423–431. MIT Press, Cam-
bridge (1993)

7. Fails, J.A., Olsen Jr., D.R.: Interactive machine learning. In: Proceedings of IUI 2003, pp.
39–45. ACM, Miami Beach (2003)

8. Renkl, A., et al.: From example study to problem solving: Smooth transitions help learning.
Journal of Experimental Education 70(4), 293–315 (2002)

	Why Tutored Problem Solving May be Better Than Example Study: Theoretical Implications from a Simulated-Student Study
	Introduction
	SimStudent: A Machine-Learning Agent You Can Teach
	An Example Cognitive Tutor: Algebra Equation Tutor
	Learning Production Rules by Demonstration
	Learning Strategies

	Learning Strategy Study
	Method
	Evaluation Metrics

	Results
	Overall Learning Performance
	Types of Errors
	Control Experiment with No Explicit Negative Feedback

	Discussion
	The Impact of Negative Feedback on Learning
	Difficulty in Rule Induction

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

