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Abstract. Is learning by solving problems better than learning from worked-out 
examples? Using a machine-learning program that learns cognitive skills from 
examples, we have conducted a study to compare three learning strategies: 
learning by solving problems with feedback and hints from a tutor, learning by 
generalizing worked-out examples exhaustively, and learning by generalizing 
worked-out examples only for the skills that need to be generalized. The results 
showed that learning by tutored problem solving outperformed other learning 
strategies. The advantage of tutored problem solving was mostly due to the er-
ror detection and correction that was available only when skills were applied 
incorrectly. The current study also suggested that learning certain kinds of con-
ditions to apply rules only for appropriate situations is quite difficult.  

Keywords: Intelligent Authoring System, Simulated Student, Programming by 
Demonstration, Machine Learning, Cognitive Tutor. 

1   Introduction 

SimStudent is a machine-learning agent that learns cognitive skills by generalizing 
solutions demonstrated [1] and also by being tutored as we describe in this paper. Our 
original motivation to develop SimStudent was to automate cognitive modeling to 
author a Cognitive Tutor that deploys model tracing to provide individualized feed-
back and contextualized help [2]. To perform model tracing, the Cognitive Tutor 
needs a cognitive model that represents domain principles. However, cognitive model-
ing is a labor-intensive task that requires significant knowledge and experience in 
cognitive task analysis and AI-programming. Embedded into Cognitive Tutor Author-
ing Tools (CTAT [3]), SimStudent acts as an intelligent building block that allows 
authors to perform authoring by demonstration, where authors merely demonstrate 
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how to solve problems (correctly and incorrectly) instead of writing a cognitive model 
by hand. SimStudent generalizes demonstrations and create a set of production rules 
that reproduce the problem-solving steps demonstrated.  

A critical research question addressed in this paper is about the efficiency of 
SimStudent: How can SimStudent be taught most effectively?  

Originally, SimStudent was a “passive” learner in the sense that SimStudent at-
tempted to generalize every problem-solving step demonstrated, but did not attempt to 
perform problem-solving steps on its own. SimStudent could reduce the learning load 
by selectively choosing certain steps to generalize; for instance, generalizing a step only 
when SimStudent does not have a production rule that reproduces the step demon-
strated. Assuming that applying an existing skill is easier than learning a new skill, this 
learning strategy might require a relatively shorter learning time to achieve the same 
quality of cognitive model. A third possibility is that SimStudent could actively solve 
problems, rather than explaining demonstrations, and get feedback. Since the author will 
see SimStudent performing actions, which provides a chance to explicitly correct errors, 
this tutoring strategy might outperform passive or the selective learning strategies. 

In this paper, we compare three learning strategies to answer the following re-
search question: Which learning strategy is better in terms of efficiency of training 
and quality of resulting cognitive models? Answering this question is not only impor-
tant for authoring purposes, but it may also provide us theoretical insights into under-
standing human learning by inspecting SimStudent’s learning processes and learning 
outcomes, which are not easily attainable in human subjects.  

2   SimStudent: A Machine-Learning Agent You Can Teach 

An actual image of the Cognitive Tutor used in the current study is shown in Fig. 1. 
Suppose that an author is trying to build a Cognitive Tutor for Algebra equation solv-
ing. The author has just built the Tutor interface shown in Fig. 1 by using CTAT. 
Now, the author launched SimStudent to create a cognitive model for equation solv-
ing by using the Tutor interface and solves a few problems.  

2.1   An Example Cognitive Tutor: Algebra Equation Tutor  

In this tutor, equations are represented with a mathematical operation to transform a 
given equation to another form. To transform an equation, an operation must be speci-
fied first, followed by the left-hand and right-hand sides of the resultant equation 
being entered in the adjacent row. Fig. 1 shows that the author has decided to “add -1” 
to both sides, and the left-hand side has just been entered. In sum, a single equation-
solving step (e.g., transforming “3x+1=x+4” into “3x=x+3”) is modeled as three 
steps – (1) selecting an operation for transformation, (2) entering an expression for the 
left-hand side, and (3) for the right-hand side. The first step is called transformation 
step, and the last two steps are called type-in steps. In this paper, the word “step” 
means one of these three steps. An operation for transformation must be specified 
prior to entering any expressions. The order of entering sides can be arbitrary, but 
both sides must be entered before selecting the next operation. The skills to select an 
appropriate operation are called transformation skills, and the skills to enter left- and 
right-hand sides are called type-in skills.  
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Fig. 1. The Tutor Interface for the Algebra I CTAT Tutor. Students are supposed to enter an 
operation for transformation first in the column labeled as “Skill Operand.” Then corresponding 
expressions for the left- and right-hand sides must be entered. 

2.2   Learning Production Rules by Demonstration 

Each of the production rules represents an individual skill to perform a particular step. 
Performing a step is modeled as generating a tuple that consists of an action taken 
(e.g., “entering some text”), a place that was selected to take the action (e.g., “the 
second cell in the first column”), and the value that was input as a result of taking the 
action (e.g., the string “3x”). Those are called action, selection, and input. A tuple of 
<selection, action, input> is called an SAI tuple.  

A production rule models a particular skill in terms of what, when, and how to gen-
erate a particular SAI tuple. In other words, a production rule shows that “To perform 
a step, first look at X and see if a condition Y holds. If so then do Z.” The part of the 
production rule representing X (what) is called the focus of attention that specifies 
particular elements with certain constraints like “the cell in the table” shown in the 
Tutor interface. The part of the production rule representing Y (when) is called the 
feature tests. The feature tests represent a set of conditions that must hold about the 
focus of attention – e.g., the two cells must be in the same row, the expression in the 
cell must be polynomial, etc. Together, the focus of attention and the feature tests 
compose the left-hand side (i.e., the condition part) of a production rule. The right-
hand side (i.e., the action part) of a production rule contains a sequence of operations 
that generates the value of the input in the SAI tuple.  

Prior to learning, SimStudent is given a hierarchical structure of the elements in the 
Tutor interface with which to express the constraints among the focus of attention, a 
set of feature predicates with which to express feature tests, and a set of operators 
with which to compose a sequence of operations. SimStudent has a library of feature 
predicates and operators that are general for arithmetic and algebra, but the authors 
might need to write domain-specific background knowledge to use SimStudent for 
other domains.  

When demonstrating a step, the author first needs to specify the focus of attention 
by double-clicking the elements on the Tutor interface. Then he/she performs a step, 
namely, takes an “action” upon a “selection” with an appropriate “input” value. Fi-
nally, the author needs to label the demonstrated step. This label is called the skill 
name. 

When a step is demonstrated for a particular skill K with a focus of attention F and 
an SAI tuple T, the pair <F, T> becomes a positive example of the skill K. The pair 
<F, T> also becomes a negative example for all other skills. This indicates to “apply 
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skill K to carry out the SAI tuple T when you see the focus of attention F, but do not 
apply any skills other than K when you see F.” We call this kind of negative examples 
the implicit negative examples as opposed to the explicit negative examples used for 
tutored problem solving, which is described in the next section. Once a positive ex-
ample is acquired, it stays as positive throughout a learning session. On the other 
hand, an implicit negative example for a skill would later become a positive example 
if the same focus of attention is eventually used to demonstrate that skill.  

When a new positive or negative example is added for a particular skill, SimStu-
dent learns the skill by generalizing and/or specializing the production rule for the 
skill so that it applies to all positive examples and does not apply to any negative 
examples. The focus of attention is generalized so that they are consistent with all 
instances of the focus of attention appearing in the positive examples. An example 
generalization is to shift from “first column” to “any column.” Feature tests are gen-
eralized and/or specialized so that they cover all positive examples and no negative 
examples that is done by Inductive Logic Programming [4] in the form of Foil [5]. 
The operator sequence is generalized so that it generates “input” values from the fo-
cus of attention for all SAI tuples in the positive examples.  

2.3   Learning Strategies 

The original version of SimStudent always learns skills whenever a step is demon-
strated by generalizing existing skills or introducing a new skill. This can be seen as a 
model of human students diligently learning skills from worked-out examples, regard-
less of what they already can do (although it sounds too idealistic).  

As an interesting twist (and a step towards a more realistic model), the author can 
also have SimStudent try to “explain” the step demonstrated, by identifying a previ-
ously learned skill that replicates the step demonstrated, and having SimStudent learn 
skills only when it fails to explain the step. This is analogous to human students learn-
ing from worked-out examples while self-explaining the solutions.  

Furthermore, the author can instead tutor SimStudent on how to solve problems. 
The author provides problems to SimStudent, lets SimStudent solve them, and pro-
vides feedback on each of the attempts made. When SimStudent makes an error, the 
author can provide negative feedback, which will motivate SimStudent to accumulate 
an explicit negative example– i.e, it will learn when not to apply a skill because it 
produces an incorrect output. When SimStudent has no rules indicating how to per-
form a step, the author provides a “hint” on what to do next; this hint is just a demon-
stration of how to perform the step. This is a model of learning by tutored problem 
solving.  

In summary, we implemented these three learning strategies for SimStudent:  
Diligent Learning – provides demonstrations on every step and SimStudent learns 

skills each time a step is demonstrated.  
Example Study – provides demonstrations on every step and SimStudent attempts 

to identify a production rule that reproduces the step demonstrated. Only when 
the attempt fails, does SimStudent learn skills.  

Tutored Problem Solving – provides SimStudent with problems to solve. For each 
step, SimStudent is asked to show all rule applications that can be done. For 
each of the rule applications, SimStudent gets flagged feedback from an oracle, 
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which merely tells the correctness of the rule application. Correct rule applica-
tions become positive examples and incorrect ones become negative examples. 
When there is no correct rule application for a step, SimStudent asks a what-to-
do-next hint to the oracle. The oracle then demonstrates to SimStudent how to 
perform the step.  

The oracle for the Tutored Problem Solving can be either a human or another com-
puter program. In the current study, we used the commercially available Cognitive 
Tutor, Carnegie Learning Algebra I Tutor, as the oracle. The details follow.  

3   Learning Strategy Study 

This section describes a study conducted to evaluate the efficiency of each of the 
three learning strategies described in section 2.3.  

3.1   Method 

Three versions of SimStudent were implemented – one for each of the three learning 
strategies. Each SimStudent was trained with 20 problems and tested with ten prob-
lems. Since hundreds of steps must be demonstrated and tested to complete the study, 
it was not realistic to ask human authors to be involved in the study. Instead, we used 
pre-recorded and machine-generated demonstrations as described below. 

The pre-recorded demonstrations were collected from a previous classroom study 
conducted in the PSLC LearnLab.1 In the LearnLab study, the Carnegie Learning 
Algebra I Tutor was used in an urban high-school algebra class. The high-school 
students were asked to use the Algebra I Tutor individually. The students’ activities 
were logged and stored into a large database, called DataShop.2 We then extracted 
problems and human students’ correct steps from DataShop for the current study. An 
entire (correct) solution for a particular problem made by a particular student became 
a single training problem for the Example Study condition and the Diligent Learning 
condition. The problems were randomly selected from the DataShop data. 

For the Tutored Problem Solving condition, SimStudent was tutored by the Carne-
gie Learning Algebra I tutor. That is, when SimStudent got stuck, SimStudent asked a 
what-to-do-next hint to the Carnegie Learning Algebra I tutor, and the Carnegie 
Learning Tutor provided a precise instruction for what to do in the form of the bot-
tom-out hint, which provides the same information as the SAI tuple. Whenever 
SimStudent performed a step, each of the rule applications was sent to the Carnegie 
Learning Algebra I Tutor to get a flagged feedback. 

There were five disjoint sets of training problems (i.e., the total of 100 training 
problems). Thus, there was a total of 15 experimental sessions (five training sets for 
each of the three learning-strategy conditions). 

Each time SimStudent was trained on a new training problem, the production rules 
learned were tested with the ten test problems. The same set of test problems was 
used for all of the 15 experimental sessions. The test problems were also randomly 
collected from the LearnLab study. For each of the steps in a test problem, we asked 
                                                           
1 www.learnlab.org 
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SimStudent which production rules can be fired. Since we wanted to know how 
poorly SimStudent solves problems in addition to how well, we recorded all possible 
rule applications for each step. More precisely speaking, for each step, we enumerated 
all production rules whose left-hand conditions hold. The correctness of a rule appli-
cation was evaluated by the Carnegie Learning Algebra I Tutor. The steps performed 
by SimStudent were coded as correct if there was at least one correct rule application 
attempted. Otherwise, the steps were coded as missed.  

3.2   Evaluation Metrics 

We define a dependent variable, called the Step score, that represents how well the 
production rules learned were applied on individual steps in the test problems. A step 
is scored as zero if it was missed (i.e., no correct rule application was made – see the 
definition above). Otherwise, a step was scored as a ratio of the number of correct rule 
applications to the total number of rule applications applicable to that particular step. 
For example, if there were 2 correct and 6 incorrect rule applications for the step, then 
the Step score for that step is 0.25. The step score ranges from 0 (no correct rules 
applicable) to 1 (no incorrect rules applicable, and at least one correct rule applies). 
We define the Problem score as the average Step score for all steps in a test problem. 

In general, there are several correct and incorrect rule applications available for 
each step. Since SimStudent does not have any strategy to select a single rule among 
these conflicting rule applications, the Step score can be seen as a probability that the 
step is performed correctly at the first attempt. 

4   Results 

4.1   Overall Learning Performance 

Fig. 2 shows average Problem Score for each learning-strategy condition. The X-axis 
shows the number of training problems learned. The Problem score was aggregated 
across the ten test problems and the five training sets (i.e., average of the 50 Problem 
scores for each condition). All three conditions showed an overall improvement on 
the Problem score when more training problems were learned.  

The three learning conditions improved equally on the first 8 problems. After that, 
the Tutored Problem Solving condition outperformed other conditions. There was a 
point, for all three conditions, where the improvement of the performance on the test 
problems diminished to almost nothing. After training on all 20 problems, the average 
Problem score was 0.78 for the Tutored Problem Solving, 0.72 for the Diligent Learn-
ing, and 0.66 for the Example Study. ANOVA revealed a main effect of the learning 
strategy; F=7.68, p<0.001. The paired t-tests showed that all three learning-strategy 
conditions are significantly different from each other. The Tutored Problems-Solving 
condition outperformed the other two conditions on the Problem score. The Example 
Study was the least efficient learning strategy in terms of the Problem score. 

To further investigate why the Tutored Problem Solving condition led to better 
learning, we broke down the Step score (the basis of the Problem score) into two 
scores: (1) the Precision score showing the ratio of the number of correct to incorrect 
rule applications for a step, and (2) the Recall score showing the ratio of the number 
of steps that were performed correctly to the total number of steps in a test problem.  
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Fig. 2. Overall improvement of the Problem scores. The X-axis shows the number of training 
problems. The Y-axis shows the average Problem scores on the ten test problems, aggregated 
across five training sets. 

 

Fig. 3. Average Precision scores. The X-axis shows the number of training problems learned by 
the time the Precision score was measured. 

Fig. 3 shows the average Precision score for the ten test problems aggregated across 
the training sets. On the 20th training problem, there was a main effect of the learning 
strategy; F=24.49, p<0.001. The paired t-tests confirmed that all three conditions are 
significantly different from each other. The Tutored Problem Solving condition outper-
formed other conditions on the Precision score. This means that the production rules 
learned by Tutored Problem Solving were more likely to produce correct rule applica-
tions than the rules learned by other learning strategies.  

Fig. 4 shows the average Recall score. ANOVA showed a main effect of the learn-
ing condition; F=7.68, p<0.001. The paired t-tests showed that the Tutored Problem 
Solving was significantly inferior to the other two conditions (both t=2.01, p<0.001), 
but the difference between Example Study and Diligent Learning was not significant. 
The Tutored Problem Solving condition was significantly inferior to other two  
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Fig. 4. Average Recall score. The X-axis shows the number of training problems. 

conditions, meaning the Tutored Problem Solving condition did not learn as many 
production rules necessary to solve test problems as other conditions did. On average, 
the Tutored Problem Solving condition learned the fewest production rules (11.6), and 
the Diligent Learning condition learned the most (21.0). The Example Study condi-
tion learned 16.0 production rules on average. 

4.2   Types of Errors 

To see if there were any differences in the kinds of errors made by each learning con-
dition, we categorized the errors appeared on the test problems. Regardless of the 
learning strategy, once the learning was saturated (i.e., after learning ten problems for 
Diligent Learning and Example Study, and 13 problems for Tutored Problem Solv-
ing), there were only two types of errors: (1) Step-Skipping error – attempting to apply 
a transformation skill without completing previous type-in steps, (2) No-Progress 
error – applying a transformation skill that does not make the transformed equation 
any closer to a solution (see section 0 for the definition of steps and skills).  

An example of a Step-Skipping error is to apply another transformation skill to the 
situation shown in Fig. 1, and enter, say, “divide 3” into the rightmost cell on the sec-
ond row when the middle cell (right-hand side of the equation) is left blank.  

An example of a No-Progress error is to “subtract 2x” from 2x+3=5.  This is a 
mathematically valid step, but it does not make the resultant equation any closer to a 
solution.  

Both Step-Skipping and No-Progress steps are considered as a wrong step by the 
Carnegie Learning Algebra I Tutor. Thus, SimStudent received negative feedback on 
both of these erroneous steps during tutored problem-solving.  

No-Progress errors appeared in all three conditions. Quite interestingly, there were 
no Step-Skipping errors observed for the Tutored Problem Solving condition. Why? 
We hypothesized that only Tutored Problem Solving had a chance to revise incorrect 
skills during training, by making a Step-Skipping error and receiving negative feed-
back, which allowed SimStudent to accumulate negative examples to correctly learn 
LHS conditions. Namely, making an explicit error and getting a flagged feedback on 
it (which, by definition, merely tells the correctness of the step) should have positively 
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contributed to learning. To test this hypothesis, we controlled the creation of negative 
examples for the Tutored Problem Solving condition, which is described in the next 
section.  

4.3   Control Experiment with No Explicit Negative Feedback 

We have modified the Tutored Problem Solving condition, so that it does not generate 
negative examples for incorrect rule applications. SimStudent still received negative 
feedback for incorrect rule applications, thus another attempt was made to perform a 
step. This means that the modified version of Tutored Problem Solving still had the 
same amount of positive examples during training as the original version.  

With this modification, the Tutored Problem Solving condition made the same 
Step-Skipping errors as the other conditions. Thus, it was the explicit negative exam-
ples obtained by incorrect rule applications that caused the high Precision score for 
the Tutored Problem Solving condition.  

This modification did not affect the appearance of the No-Progress errors – having 
more negative examples did not prevent skills from being incorrectly generalized and 
making No-Progress errors.  

5   Discussion 

5.1   The Impact of Negative Feedback on Learning 

The most important finding in the current study is that the most effective way to train 
SimStudent is Tutored Problem Solving. It is crucial for successful learning to allow 
SimStudent to commit itself to apply its own skills to solve problems – this is a natu-
ral way to give SimStudent negative feedback explicitly for the incorrect skill applica-
tions so that incorrect skills are appropriately generalized.  

It is interesting to see that Example Study and Diligent Learning are superior  
to Tutored Problem Solving at some point on the fifth and sixth training problems 
(Fig. 2). This was mostly due to the high Recall scores – Example Study and Diligent 
Learning tend to learn more rules that correctly perform steps. However, at the same 
time, they also have a tendency to learn incorrect rules as well. Those incorrect rules 
can only be eliminated through explicit negative feedback.  

Despite the importance of the negative examples, programming by demonstration 
in most cases only produces positive examples. Kosbie and Myers [6] emphasized the 
issue of program execution in the shared common structure of programming by dem-
onstration. We further emphasize the importance of feedback about incorrect program 
execution in providing explicit negative examples. Interactive Machine Learning [7] 
is a good example of successful application of programming by demonstration where 
the learning agent can acquire negative examples explicitly through program execu-
tion. 

5.2   Difficulty in Rule Induction 

Another important lesson learned is the difficulty of inductive learning. It turned out 
that learning appropriately generalized rules that do not generate No-Progress errors is 
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challenging in this particular domain. Despite having explicit negative feedback on 
the No-Progress errors during training, the Tutored Problem Solving condition still 
made the No-Progress errors on the test problems.  

Since No-Progress errors always generate mathematically valid steps (meaning, the 
RHS operator sequence is correct), the challenge is in learning LHS conditions – 
learning when to apply a particular rule is more difficult than learning how to per-
form a step. Since it is beyond the scope of the current paper, we do not further dis-
cuss this issue, but now we have narrowed down the difficulty of inductive learning to 
learning conditions for when to apply rules. This must be addressed further in future 
studies. 

6   Conclusion 

The empirical study showed that tutored problem-solving results in learning produc-
tion rules more accurately than learning from examples for SimStudent’s learning. 
Thus, for authoring purposes, tutoring SimStudent instead of demonstrating solutions 
may be a better form of using SimStudent as an aid to author Cognitive Tutors, as-
suming that providing feedback does not cost too much for the authors. In the 20 
training problems, each skill was demonstrated 13.5 times on average for Diligent 
Learning and Example Learning, and 2.8 times for Tutored Problem Solving. For the 
Tutored Problem Solving, the tutor provided positive feedback 14.1 times and nega-
tive feedback 3.5 times on average throughout the 20 training problems. Future stud-
ies on the authoring cost analysis are necessary. 

That tutored problem solving is significantly inferior to other learning conditions 
on the Recall score must be studied further. What about starting from the example 
study first and shifting to tutored problem solving later? This is a well-known learning 
strategy that is effective for human students [8]. All three conditions tied on the Step 
score for the first few training problems, and still the example study conditions were 
better on the Recall score on those steps. Thus, starting from an example study would 
allow SimStudent to acquire production rules more quickly, and switching to tutored 
problem-solving would provide good opportunities to correct these rules.  

The current study also provides insight into future studies on inductive learning. 
Although, SimStudent has characteristics that are essentially different from human 
learning, finding out why some features are more difficult to learn than others would 
open the door for future studies on human and machine learning.  
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