
A Computational Model of How Learner Errors Arise from Weak Prior Knowledge

�oboru Matsuda (noboru.matsuda@cs.cmu.edu)

Andrew Lee (andrewlee@cmu.edu)

William W. Cohen (wcohen@cs.cmu.edu)

Kenneth R. Koedinger (koedinger@cmu.edu)
School of Computer Science, Carnegie Mellon University

5000 Forbes Ave., Pittsburgh, PA 15213 USA

Abstract

How do differences in prior conceptual knowledge affect the
nature and rate of learning? To answer this question, we built
a computational model of learning, called SimStudent, and
conducted a controlled simulation study to investigate how
learning a complex skill changes when the system is given
“weak” domain-general vs. “strong” domain-specific prior
knowledge. We measured SimStudent’s learning outcomes as
the rate of learning, the accuracy of learned skills (test scores),
and the fit to the pattern of errors made by real students. We
found that when the “weak” prior knowledge is given, not
only the accuracy of learned skills decreases, but also the
learning rate significantly slows down. The accuracy of
predicting student errors increased significantly – namely,
SimStudent with the weak prior knowledge made the same
errors that real students commonly make. These modeling
results help explain empirical results connecting prior
knowledge and student learning (Booth & Koedinger, 2008).

Keywords: Computational model of learning; machine
learning; SimStudent; weak prior knowledge; patterns of
student errors; mathematics education.

Introduction

In this paper, we present an innovative application of a

synthetic student for modeling the error-prone process of

student learning in a complex problem-solving domain.

Previous studies have shown that student

misconceptions or flaws in their prior knowledge not only

directly cause errors in solving problems (VanLehn & Jones,

1993), but may also affect learning. For instance, Booth

and Koedinger (2008) demonstrated that particular

limitations in prior knowledge (e.g., treating terms in an

equation as though terms and numbers were equivalent

concepts) were correlated with particular strategic errors

later in instruction (e.g., subtracting 4 from both sides of x-

4=13). The presumed causal connection is that the nature of

student prior knowledge changes the learning process and

thus leads to differences in the problem-solving knowledge

that is acquired. But what is this learning process and how

is it affected by differences in prior knowledge?

A classic result from Chi, Feltovich, and Glaser’s study

(1981) that experts categorize problems with deep solution-

relevant features while novices categorize problems with

shallow, perceptually apparent, features is also relevant to

our endeavor. Also, Novick and Holyak (1991) found that

domain expertise is a significant predictor of analogical

transfer, but general analogical reasoning skill is not. We are

ultimately interested in understanding how a novice goes

from only being aware of shallow features to learning to

encode problems in terms of deep features. Our strategy

toward tackling this important question is to create a

computational model of the learning process in complex

math and science domains and to use fine-grain data from

student learning over time to constrain model development.

Our first steps involve demonstrating how a computational

model of learning can learn when given shallow (or “weak”)

knowledge, how such learning is slower than when deep (or

“strong”) knowledge is available, and how learning based

on shallow/weak knowledge better predicts patterns of real

student errors.

In this study, we focus on the process of learning

problem-solving skills from examples, where students

generalize examples to inductively learn skills to solve

problems. We are particularly interested in errors that are

made by applying incorrect skills, and our computational

model explains the processes of learning such incorrect

skills as incorrect induction from examples. A number of

models of student errors have been proposed (Brown &

Burton, 1978; Langley & Ohlsson, 1984; Sleeman, Kelly,

Martinak, Ward, & Moore, 1989; Weber, 1996; Young &

O'Shea, 1981). Our effort builds on the past works by

exploring how differences in prior knowledge affect the

nature of the incorrect skills acquired and the errors derived.

We hypothesize that incorrect generalizations are more

likely when students have weaker, more general prior

knowledge for encoding incoming information. This

knowledge is typically perceptually grounded and is in

contrast to deeper or more abstract encoding knowledge.

An example of such perceptually grounded prior knowledge

is to recognize 3 in x/3 simply as a number instead of as a

denominator. Such an interpretation might lead students to

learn an inappropriate generalization such as “multiply both

sides by a number in the left hand side of the equation” after

observing x/3=5 gets x=15. If this generalization gets

applied to an equation like 4x=2, the error of multiplying

both sides by 4 is produced. We call this type of

perceptually grounded prior knowledge “weak” prior

knowledge in a similar sense as Newell and Simon’s weak

reasoning methods (1972). Weak knowledge can apply

across domains and can yield successful results prior to

domain-specific instruction. However, in contrast to

“strong” domain-specific knowledge, weak knowledge is

more likely to lead to incorrect conclusions.

The goal of the present paper is to investigate an impact

of the prior knowledge on learning problem-solving skills

Proc. of the Annual Conference of the Cognitive Science Society (2009, in press)

using a computational model of inductive learning. We have

implemented the proposed learning model as an interactive

machine-learning agent, called SimStudent that learns skills

through tutored problem-solving. To test the hypothesis

about the impact of “weak” prior knowledge on learning, we

conducted a controlled simulation study by giving

SimStudents different types of prior knowledge and

measuring learning outcomes as well as a fit to human

students’ error patterns.

In the rest of the paper, we first analyze typical errors

that human students commonly make. The analysis is based

on student-tutor interaction log data collected from a

classroom study. We then provide a brief overview of

SimStudent, mostly focused on its learning algorithms to

present how prior knowledge affects the SimStudent

learning. Finally, we describe an empirical simulation study

to test our hypotheses where SimStudents are trained with

different kinds of prior knowledge to measure the impact of

prior knowledge on learning outcome.

Student Errors

For the current study, we used a dataset collected from a

classroom study where students learned Algebra I with a

commercially available Cognitive Tutor (called the Algebra

Tutor hereafter) developed by Carnegie Learning Inc. The

classroom study was conducted to investigate how students’

prior knowledge affect the way students develop

misconceptions (Booth & Koedinger, 2008).

While students were learning equation solving with the

Algebra Tutor, the interaction between the individual

students and the Algebra Tutor was recorded and stored in a

free, open-resource repository, called DataShop (Koedinger,

Cunningham, Skogsholm, & Leber, 2008) that shares

experimental data collected from in vivo studies conducted

in LearnLab participating schools maintained by the

Pittsburgh Science of Learning Center (www.learnlab.org).

This section describes the student-tutor interaction log data

used and the analysis of errors made by students.

Data

There were 71 students involved in the classroom study. A

total of 19,683 transactions between the students and the

Algebra Tutor were recorded. A transaction represents

either (1) a student’s attempt at a step with possible

feedback from the Tutor, or (2) a student’s request for a hint

with the actual hint message provided by the Tutor. During

tutoring, students had to perform a step correctly to proceed

to the next step, but students could make multiple mistakes.

They could also ask for a hint when they could not perform

a step correctly. The Tutor first provided an abstract hint,

but then students could have asked for a more detailed hint

if necessary, until the Tutor finally provides very specific

instruction on what to do next (e.g., “enter 3x in the

highlighted cell”), the so-called “bottom-out hint.”

The transactions in which students made an attempt at a

step were coded as “Correct” if the Tutor recognized the

attempt as a correct behavior, “Bug” if the attempt was

recognized as a known type of error by the Tutor, or “Error”

otherwise. There were a total of 11040 “Correct”

transactions, 2010 “Bug” transactions, and 1097 “Error”

transactions in the dataset. The remaining transactions were

hint requests.

Error Analysis

To analyze errors made by students, we categorized the total

of 3107 Bug and Error transactions by abstracting an error

itself as well as the equation on which the error was made.

We abstracted errors and equations by replacing

numbers and variables with letters. For example, when a

student made an error to “multiply by 3” for “3/x=-4,” the

equation was represented as “A/v = -B” and the error was

represented as “multiply by A.” We call the abstracted form

of error and equation the Error Schema and Problem

Schema. Table 1 shows the three most common error

schemata observed in the dataset.

SimStudent

SimStudent is an application of programming by

demonstration (Cypher, 1993) with an underling inductive

logic programming technique (Muggleton, 1991) that

generalizes examples of correct and incorrect skill

applications to learn individual skills and their applications

sufficient to solve problems.

For SimStudent, generalization for a particular skill

application is done by providing a pragmatic explanation on

“when” the skill should be applied on “what” part of the

problem and “how” a step is made. A generalization of a

skill application is then represented in the form of

production rule. The what- and when-parts of an

explanation compose the condition part (left-hand side) of

the production rule. The how-part composes the action part

(right-hand side) of the production rule.

Learning Algorithms

During tutoring, SimStudent accumulates positive examples

of a particular skill application when (1) the Tutor provides

a bottom-out hint on a step on which the skill is applied, or

Table 1: The three most common error schemata. The

problem schema is an abstracted form of an equation with A,

B, and C representing numbers and v representing a variable.

An error schema represents the error pattern by using letters

from the problem schema

Error Schema Frequency Problem Schema

multiply by A 73 A/v=C, A/v=-C,

-C=A/v, C=A/v, Av=C,

v/-A=-C, C=v/-A, …

divide by A 42 -Av=C, -Av=-C,

C=-Av, -C=-Av,

v/A=-C, C=v/A, …

add –B 32 C=-B+Av, -B+(-Av)=-C,

C=Av+(-B), -B+(-Av)=C,

-C=-B+Av

(2) SimStudent correctly applies the skill. On the other

hand, SimStudent accumulates negative examples for a skill

application when (1) SimStudent applies the skill

incorrectly and gets negative feedback from the Tutor, or (2)

when a tutor provides a hint on a different skill – the context

where that skill was applied becomes an implicit negative

example for all other skills. SimStudent composes a

production rule for each individual skill so that the

production rules agree all positive examples and do not

agree any of the negative examples.

To compose production rules, SimStudent uses two

types of prior knowledge: feature predicates and operators.

Feature predicates are boolean functions used to test

whether a particular condition holds in a given situation. For

example, a feature predicate isPolynomial(P) returns the

boolean value true when P is a polynomial expression.

Feature predicates are used to compose conditionals in the

left-hand side of the production rules. Operators are general

string manipulation functions. For example, an operator

getCoefficient(T) returns a coefficient of the term T when T

is a variable term. Operators are used to compose a right-

hand side action sequence to generate the target step in an

example.

Manipulating Prior Knowledge

Students often make errors by treating numbers and

variables superficially without taking the surrounding

context into account. For example, when a student says

3x+2 becomes 5x, he/she may have added 3 and 2 to get 5

and concatenated x to it. Such behavior can be explained as

if the student had recognized the tokens 3 and 2 in the

expression as numbers and since there is a “+” in between,

the student adds these numbers together.

The error analysis mentioned in the previous section

showed that indeed, many of the common errors made by

students can be explained in this way. Namely, students

often rely exclusively on “shallow” features that are more

directly perceived in the input rather than taking the broader

context into account to infer a deep feature. An example of

use of shallow features is the mental equivalent of “to get a

number in front of a variable” instead of “to get a

coefficient of a variable term.” We model such a shallow

features with the “weak” operators, as opposed to the

“strong” domain dependent operators.

In general, a particular example can be modeled both

with weak and strong operators. For example, suppose a

step x/3=5 gets demonstrated to “multiply by 3.” Such step

can be explained by a strong operator getDenominator(x/3),

which returns a denominator of a given fraction term and

multiply that number to both sides. On the other hand, the

same step can be explained by a weak operator

getNumberStr(x/3), which returns the left-most number in a

given expression. In this context, the operator

getNumberStr() is considered to be weaker than the operator

getDemonimator(), because a production rule with

getNumberStr() explains broader errors. For example,

imagine how we could model the error schema for “multiply

by A.” This error schema can be modeled with

getNumberString() and multiply() – get a number and

multiply both sides by that number. Without the weak

operator, we need to have different (disjunctive) production

rules to model the same error schema for different problem

schemata – getNumerator() for A/v=C and getCoefficient()

for Av=C.

Based on the above observations, we have hypothesized

that we can simulate how students’ learning incorrect skills

from tutored problem-solving by providing SimStudent with

weak operators. The next section describes an empirical

study to test this hypothesis.

Error Analysis Study

Method

SimStudent was tutored on how to solve linear equation by

interacting with Carnegie Learning Algebra I Tutor like

human students learn with the Tutor interactively. That is,

SimStudent was posed a problem and asked to solve it.

When SimStudent performed a step, the Tutor provided

flagged feedback on the correctness of the step performed.

SimStudent attempted to apply rules until a step is

performed correctly. If SimStudent failed to perform a step

correctly, then SimStudent asked the Tutor for a hint. The

Tutor then provided a bottom-out hint by demonstrating

how to perform the step.

There were two experimental conditions: a Strong Prior

Knowledge condition, in which SimStudent was given only

strong prior knowledge, and a Weak Prior Knowledge

condition, in which some of the strong operators were

replaced with weak operators. Specifically speaking, the

strong operators to get a coefficient, to get a name of a

variable in a variable term, to get a denominator, and to get

a numerator were omitted. Instead, SimStudent was given

weak operators such as to get a first number, to get a first

number with sign, and to get a first alphabet letter.

There were also 12 student conditions to control a

difference in training problems. In each student condition,

there were 13 to 20 training problems. Those training

problems were randomly extracted from the same dataset

used to analyze student errors in the previous section.

To measure learning gain, the production rules learned

by SimStudent were tested on the 11 test problems each

time a tutoring was done on a single training problem. A set

of 11 test problems were also selected from the same dataset

from which the training problems were extracted, but they

were semi-randomly selected so that four of the most

commonly observed error schemata shown in Table 2 were

included.

Notice that since the test problems were extracted from

a classroom study where (human) students solved the test

problems. Thus, some of the steps in the test problems were

correct and some were incorrect. To assess the accuracy of

the model, we asked SimStudent to predict what action

could be made for each intermediate state recorded in a test

problem. Namely, we gave SimStudent intermediate states

in a test problem one at a time and (using a terminology in a

literature of production system) asked SimStudent to

computed a conflict set for each state of the given test

problem. We then used an existing Carnegie Learning

Algebra I Tutor to evaluate the correctness of individual rule

applications in the conflict set.

In each of the 12 student conditions, SimStudent was

trained on 113 steps in average (the number of actual

training problems varies). Test problems have 140 correct

and 28 incorrect steps. For the current study, we only

analyzed skills for addition, subtraction, division, and

multiplication.

Measurements

To measure the learning outcome, we have conducted both

qualitative and quantitative assessment for the production

rules learned.

For a quantitative assessment, we computed a step

score for each step in the test problems as follows: 0 if there

is no correct rule application made, otherwise it is a ratio of

the number of correct rule applications to the number of all

rule applications allowing SimStudent to show all possible

rule applications on the step.

For a qualitative assessment, we are particularly

interested in errors made by applying learned rules as well

as the accuracy of prediction. Given a step S performed by a

human student at an intermediate state �, SimStudent is

asked to compute a conflict set on �. Rule application Ri

(i = 1, …, n) is coded as follows:

True Positive: Ri yields the same step as S, and S is a

correct step.

False Positive: Ri yields a correct step that is not same

as S (S may be incorrect).

False �egative: Ri yields an incorrect step that is not

same as S (S may be correct).

True �egative: Ri yields the same step as S and S is an

incorrect step.

Results

Impact of Prior Knowledge on Learning

Both the Weak Prior Knowledge (Weak-PK) and Strong

Prior Knowledge (Strong-PK) conditions learned skills and

the performance on test problems improved as learning

proceeded. Figure 1 shows average step score, aggregated

across the test problems and student conditions. The X-axis

shows the number of training iterations.

The Weak-PK and Strong-PK conditions had similar

success rates on test problems after the first 8 training

problems. After that, the performance of the two conditions

began to diverge. On the final test after 20 training problems,

the Strong-PK condition was 82% correct while the Weak-

PK was 66%, a large and statistically significant difference

(t = 4.00, p < .001). Further, we fit simple power law

functions to the learning curves (converting success rate to

log-odds) and observed that the slope (or rate) of the Weak-

PK learning curve (.78) is smaller (or slower) than that of

the Strong-PK learning curve (.82). To test whether this

learning rate difference is significant, we subtracted the two

functions in their log-log form and verified in a linear

regression analysis that the coefficient of the number of

training problems (which predicts the difference in rate) is

significantly greater than 0 (p < .05).

While it is obvious that differences in prior knowledge

can yield to differences in initial performance (as might be

measured by a pre-test), this demonstration shows how

differences prior knowledge can also affect the rate at

which learning occurs.

Impact on Prior Knowledge on Error Prediction

Figure 2 shows a number of true negative predictions made

on the test problems for each of the training iterations.

Surprisingly, the Weak PK condition did make as many as

22 human-like errors on the 11 test problems. On the other

hand, the Strong PK condition hardly made human-like

errors.

To understand how well SimStudent predicted human-like

errors, we computed an accuracy of error prediction, called

Error Prediction score, as True Negative / (True Negative +

False Negative) on incorrect steps in test problems. Figure 3

shows the average of Error Prediction score for each of the

training iterations.

As can be seen in the figure, the Error Prediction score

improved for the Weak PK condition as learning proceeded.

Table 2: A list of the four most commonly observed error

schemata appeared in the 11 test problems. In the Error and

Problem Schemata, the letters A, B, and C shows a number

whereas the letter v shows a variable.

Error Schema Problem Schema

add A -A = B+Cv, A-Bv = C, -Av + B = C

subtract A -A + Bv = -C, Av = B, A = -Bv – C

multiply A -Av = B, A/v = B, Av = B

divide A -Av = -B, -Av + B = -C, v/A = -B

Figure 1: Average step score after each of the 20 training

problems for SimStudents with either strong or weak prior

knowledge.

This implies that SimStudent made more human-like errors

than non-human like errors when trained on more problems.

This observation further implies that the proposed model

predicts that it is difficult to get rid of human-like errors

when the learner does not have Strong prior knowledge.

Table 3 shows the types of human-like errors made by

SimStudent and the corresponding type of equations on

which the error was made on the test problems.

Although that SimStudent with Weak PK did actually

make many human-like errors is an encouraging result,

knowing the contents of production rules that SimStudent

learned (which reveals the cause of the errors) provides us

more knowledge about the impact of Weak PK on learning.

The next section shows qualitative analysis of production

rules learned with the Weak prior knowledge.

Production Rules Learned

Recall that we gave the Weak PK conditions three weak

operators – first-number, first-number-with-sign, and first-

alphabet. All human-like errors shown in Table 3 can be

explained using those operators. For example, an error to

“add B” for “A = B+Cv” can be learned as the follows:

IF right-hand side (RHS) is polynomial

THEN get a first number from RHS, and

 add that number to both sides

The italicized operation corresponds to a weak operator of

first-number. This rule might be learned from A=-B+Cv

gets “add B.”

Probably the most striking finding is that SimStudent

sometimes learned correct production rules by combining

weak operators.

In one student condition, SimStudent first learned a

skill to divide as “when the left-hand side (LHS) has a

coefficient and RHS is a constant number then divide both

sides by the first number with sign in LHS,” which is

represented as a production rule as follows:

IF LHS has a number before alphabet, and

 RHS is constant number

THEN get a first number with its sign from LHS, and

 divide both sides with it

This production rule generated a human-like error to “divide

A” for “v/A=B” during tutoring. SimStudent then revised

the rule as follows:

IF LHS consists of a number and an alphabet

THEN get the first alphabet from the LHS, and

 compute a quotient of LHS divided by the

alphabet, and

 divide both sides with the quotient

The first two operations in the action part of this production

rule are basically extracting a coefficient of a variable term.

Namely, SimStudent eventually learned how to take a

coefficient of a variable term by combining given weak

prior knowledge. This observation suggests that SimStudent

can also model students learning prior knowledge for future

learning. This must be further investigated this in the future

studies.

0

5

10

15

20

25

0
0
1

0
0
2

0
0
3

0
0
4

0
0
5

0
0
6

0
0
7

0
0
8

0
0
9

0
1
0

0
1
1

0
1
2

0
1
3

0
1
4

0
1
5

0
1
6

0
1
7

0
1
8

0
1
9

0
2
0

Weak

Strong

Figure 2: Number of True Negative predictions, which are

the same errors made both by SimStudent and human

students on the same step in the test problems.

Figure 3: Average of Error Prediction score after each of the

20 training problems for SimStudents with either strong or

weak prior knowledge.

Table 3: Errors and problem schemata that appeared during

the test as shown in Figure 2.

Error Schema Problem Schema Freqency

add B A = B + Cv 55

add A -Av+B = C 52

add A A-Bv = C 44

add C Av+B = C 23

add C Av+B = -C 23

add A -A = B+Cv 22

subtract A -A+Bv = C 20

subtract A -Av+B = C 20

divide A v/A = B 14

multiply A A/v = B 11

multiply A Av = B 2

subtract C Av+B = -C 1

subtract A A = Bv+C 1

Discussion

In this paper, we showed that SimStudent can be treated as a

computational model of human learning, and demonstrated

the ability to model the error-prone process of student

learning in a complex problem-solving domain. The

fundamental hypothesis is that when students rely on more

perceptually grounded, shallow prior knowledge then they

are more likely to learn incorrect skills.

We have seen the impact of Weak prior knowledge on

learning in two ways: (1) although SimStudent learns skills

with the Weak prior knowledge, the rate of learning slows

down and the accuracy of learned skills is not as good as the

ones learned with the Strong prior knowledge, and (2) the

Weak prior knowledge leads SimStudent to learn

qualitatively different production rules than the ones learned

with the Strong prior knowledge. With the Weak prior

knowledge, SimStudent often learned incorrect production

rules that produced the same errors the human students

made.

In prior comparisons of SimStudent with real student

data (Matsuda, Cohen, Sewall, Lacerda, & Koedinger,

2007), we found that SimStudent started off behind real

students (perhaps because real students have equation

solving experience prior to using the tutor), but then quickly

passed them. Namely, in these prior runs of SimStudent,

which used only strong prior knowledge, the learning rate

was too fast relative to human students. The current weak-

PK version of SimStudent is not only producing plausible

student errors but is learning at a slower rate that may well

better correspond with the learning rate of real students. We

will explore such a comparison in future work.

In the study shown in this paper, we controlled prior

knowledge only for the operators to manipulate algebraic

expressions. We also noticed that human students often pay

attention only to surface (shallow) features of the problems.

Such skewed perception on features can be modeled as

weak feature predicates for SimStudent. An impact of

having perceptually grounded weak feature predicates along

with the weak operators on learning must be tested in the

future studies.

In the current study, we have designed weak operators

based on the observation of errors made by human students.

One way to increase a cognitive fidelity of the proposed

computational model is to provide more human-like “weak”

prior knowledge. Analyzing students’ misconceptions and

beliefs in conceptual knowledge (as opposed to the

procedural skills represented as production rules) would

provide insight into designing such human-like “weak”

prior knowledge. Such an attempt would also lead us to

better understanding on how and why prior knowledge

affects not only solving problems but also learning

procedural skills.

Acknowledgments

The research presented in this paper is supported by the

National Science Foundation Award No. REC-0537198.

This work was also supported in part by the Pittsburgh

Science of Learning Center, which is funded by the National

Science Foundation Award No. SBE-0354420.

References

Booth, J. L., & Koedinger, K. R. (2008). Key

misconceptions in algebraic problem solving. In B. C.

Love, K. McRae & V. M. Sloutsky (Eds.), Proceedings of

the 30th Annual Conference of the Cognitive Science

Society (pp. 571-576). Austin, TX: Cognitive Science

Society.

Brown, J. S., & Burton, R. R. (1978). Diagnostic models for

procedural bugs in basic mathematical skills. Cognitive

Science, 2(2), 155-192.

Chi, M. T. H., Feltovich, P. J., & Glaser, R. (1981).

Categorization and representation of physics problems by

experts and novices. Cognitive Science, 5, 121-152.

Cypher, A. (Ed.). (1993). Watch what I do: Programming

by Demonstration. Cambridge, MA: MIT Press.

Koedinger, K. R., Cunningham, K., Skogsholm, A., &

Leber, B. (2008). An open repository and analysis tools

for fine-grained, longitudinal learner data. In Proceedings

of the international Conference on Educational Data

Mining.

Langley, P., & Ohlsson, S. (1984). Automated cognitive

modeling. In Proceedings of the Fourth �ational

Conference on Artificial Intelligence (pp. 193-197).

Melon Park, CA: AAAI.

Matsuda, N., Cohen, W. W., Sewall, J., Lacerda, G., &

Koedinger, K. R. (2007). Predicting Students

Performance with SimStudent that Learns Cognitive

Skills from Observation. In R. Luckin, K. R. Koedinger &

J. Greer (Eds.), Artificial Intelligence in Education (pp.

467-476). Amsterdam, Netherlands: IOS Press.

Muggleton, S. (1991). Inductive Logic Programming �ew

Generation Computing, 8(4), 295-318.

Newell, A., & Simon, H. A. (1972). Human problem

solving. Englewood Cliffs, NJ: Prentice-Hall.

Novick, L. R., & Holyoak, K. J. (1991). Mathematical

problem solving by analogy. Journal of Experimental

Psychology: Learning, Memory, and Cognition, 17(3),

398-415.

Sleeman, D. H., Kelly, A. E., Martinak, R., Ward, R. D., &

Moore, J. L. (1989). Studies of Diagnosis and

Remediation with High School Algebra Students.

Cognitive Science, 13(4), 551-568.

VanLehn, K., & Jones, R. M. (1993). What mediates the

self-explanation effect? Knowledge gaps, schemas or

analogies? In M. Polson (Ed.), Proceedings of the

Fifteenth Annual Conference of the Cognitive Science

Society (pp. 1034-1039). Hillsdale, NJ: Erlbaum.

Weber, G. (1996). Episodic learner modeling. Cognitive

Science, 20(2), 195-236.

Young, R. M., & O'Shea, T. (1981). Errors in Children's

Subtraction. Cognitive Science, 5(2), 153 - 177.

