
A Computational Model of How Learner Errors Arise from Weak Prior Knowledge 
 

�oboru Matsuda (noboru.matsuda@cs.cmu.edu) 

Andrew Lee (andrewlee@cmu.edu) 

William W. Cohen (wcohen@cs.cmu.edu) 

Kenneth R. Koedinger (koedinger@cmu.edu) 
School of Computer Science, Carnegie Mellon University 

5000 Forbes Ave., Pittsburgh, PA 15213 USA 

 

 

Abstract 

How do differences in prior conceptual knowledge affect the 
nature and rate of learning?  To answer this question, we built 
a computational model of learning, called SimStudent, and 
conducted a controlled simulation study to investigate how 
learning a complex skill changes when the system is given 
“weak” domain-general vs. “strong” domain-specific prior 
knowledge. We measured SimStudent’s learning outcomes as 
the rate of learning, the accuracy of learned skills (test scores), 
and the fit to the pattern of errors made by real students. We 
found that when the “weak” prior knowledge is given, not 
only the accuracy of learned skills decreases, but also the 
learning rate significantly slows down. The accuracy of 
predicting student errors increased significantly – namely, 
SimStudent with the weak prior knowledge made the same 
errors that real students commonly make. These modeling 
results help explain empirical results connecting prior 
knowledge and student learning (Booth & Koedinger, 2008).  

Keywords: Computational model of learning; machine 
learning; SimStudent; weak prior knowledge; patterns of 
student errors; mathematics education. 

Introduction 

In this paper, we present an innovative application of a 

synthetic student for modeling the error-prone process of 

student learning in a complex problem-solving domain.  

Previous studies have shown that student 

misconceptions or flaws in their prior knowledge not only 

directly cause errors in solving problems (VanLehn & Jones, 

1993), but may also affect learning.  For instance, Booth 

and Koedinger (2008) demonstrated that particular 

limitations in prior knowledge (e.g., treating terms in an 

equation as though terms and numbers were equivalent 

concepts) were correlated with particular strategic errors 

later in instruction (e.g., subtracting 4 from both sides of x-

4=13). The presumed causal connection is that the nature of 

student prior knowledge changes the learning process and 

thus leads to differences in the problem-solving knowledge 

that is acquired.  But what is this learning process and how 

is it affected by differences in prior knowledge?   

A classic result from Chi, Feltovich, and Glaser’s study 

(1981) that experts categorize problems with deep solution-

relevant features while novices categorize problems with 

shallow, perceptually apparent, features is also relevant to 

our endeavor.  Also, Novick and Holyak (1991) found that 

domain expertise is a significant predictor of analogical 

transfer, but general analogical reasoning skill is not. We are 

ultimately interested in understanding how a novice goes 

from only being aware of shallow features to learning to 

encode problems in terms of deep features.  Our strategy 

toward tackling this important question is to create a 

computational model of the learning process in complex 

math and science domains and to use fine-grain data from 

student learning over time to constrain model development. 

Our first steps involve demonstrating how a computational 

model of learning can learn when given shallow (or “weak”) 

knowledge, how such learning is slower than when deep (or 

“strong”) knowledge is available, and how learning based 

on shallow/weak knowledge better predicts patterns of real 

student errors. 

In this study, we focus on the process of learning 

problem-solving skills from examples, where students 

generalize examples to inductively learn skills to solve 

problems. We are particularly interested in errors that are 

made by applying incorrect skills, and our computational 

model explains the processes of learning such incorrect 

skills as incorrect induction from examples. A number of 

models of student errors have been proposed (Brown & 

Burton, 1978; Langley & Ohlsson, 1984; Sleeman, Kelly, 

Martinak, Ward, & Moore, 1989; Weber, 1996; Young & 

O'Shea, 1981).  Our effort builds on the past works by 

exploring how differences in prior knowledge affect the 

nature of the incorrect skills acquired and the errors derived.  

We hypothesize that incorrect generalizations are more 

likely when students have weaker, more general prior 

knowledge for encoding incoming information. This 

knowledge is typically perceptually grounded and is in 

contrast to deeper or more abstract encoding knowledge.  

An example of such perceptually grounded prior knowledge 

is to recognize 3 in x/3 simply as a number instead of as a 

denominator. Such an interpretation might lead students to 

learn an inappropriate generalization such as “multiply both 

sides by a number in the left hand side of the equation” after 

observing x/3=5 gets x=15. If this generalization gets 

applied to an equation like 4x=2, the error of multiplying 

both sides by 4 is produced.  We call this type of 

perceptually grounded prior knowledge “weak” prior 

knowledge in a similar sense as Newell and Simon’s weak 

reasoning methods (1972). Weak knowledge can apply 

across domains and can yield successful results prior to 

domain-specific instruction.  However, in contrast to 

“strong” domain-specific knowledge, weak knowledge is 

more likely to lead to incorrect conclusions.   

The goal of the present paper is to investigate an impact 

of the prior knowledge on learning problem-solving skills 
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using a computational model of inductive learning. We have 

implemented the proposed learning model as an interactive 

machine-learning agent, called SimStudent that learns skills 

through tutored problem-solving. To test the hypothesis 

about the impact of “weak” prior knowledge on learning, we 

conducted a controlled simulation study by giving 

SimStudents different types of prior knowledge and 

measuring learning outcomes as well as a fit to human 

students’ error patterns.  

In the rest of the paper, we first analyze typical errors 

that human students commonly make. The analysis is based 

on student-tutor interaction log data collected from a 

classroom study. We then provide a brief overview of 

SimStudent, mostly focused on its learning algorithms to 

present how prior knowledge affects the SimStudent 

learning. Finally, we describe an empirical simulation study 

to test our hypotheses where SimStudents are trained with 

different kinds of prior knowledge to measure the impact of 

prior knowledge on learning outcome.  

Student Errors 

For the current study, we used a dataset collected from a 

classroom study where students learned Algebra I with a 

commercially available Cognitive Tutor (called the Algebra 

Tutor hereafter) developed by Carnegie Learning Inc. The 

classroom study was conducted to investigate how students’ 

prior knowledge affect the way students develop 

misconceptions (Booth & Koedinger, 2008).  

While students were learning equation solving with the 

Algebra Tutor, the interaction between the individual 

students and the Algebra Tutor was recorded and stored in a 

free, open-resource repository, called DataShop (Koedinger, 

Cunningham, Skogsholm, & Leber, 2008) that shares 

experimental data collected from in vivo studies conducted 

in LearnLab participating schools maintained by the 

Pittsburgh Science of Learning Center (www.learnlab.org).  

This section describes the student-tutor interaction log data 

used and the analysis of errors made by students. 

Data 

There were 71 students involved in the classroom study. A 

total of 19,683 transactions between the students and the 

Algebra Tutor were recorded. A transaction represents 

either (1) a student’s attempt at a step with possible 

feedback from the Tutor, or (2) a student’s request for a hint 

with the actual hint message provided by the Tutor. During 

tutoring, students had to perform a step correctly to proceed 

to the next step, but students could make multiple mistakes. 

They could also ask for a hint when they could not perform 

a step correctly. The Tutor first provided an abstract hint, 

but then students could have asked for a more detailed hint 

if necessary, until the Tutor finally provides very specific 

instruction on what to do next (e.g., “enter 3x in the 

highlighted cell”), the so-called “bottom-out hint.”   

The transactions in which students made an attempt at a 

step were coded as “Correct” if the Tutor recognized the 

attempt as a correct behavior, “Bug” if the attempt was 

recognized as a known type of error by the Tutor, or “Error” 

otherwise.  There were a total of 11040 “Correct” 

transactions, 2010 “Bug” transactions, and 1097 “Error” 

transactions in the dataset. The remaining transactions were 

hint requests.  

Error Analysis 

To analyze errors made by students, we categorized the total 

of 3107 Bug and Error transactions by abstracting an error 

itself as well as the equation on which the error was made.  

We abstracted errors and equations by replacing 

numbers and variables with letters. For example, when a 

student made an error to “multiply by 3” for “3/x=-4,” the 

equation was represented as “A/v = -B” and the error was 

represented as “multiply by A.” We call the abstracted form 

of error and equation the Error Schema and Problem 

Schema. Table 1 shows the three most common error 

schemata observed in the dataset.  

SimStudent 

SimStudent is an application of programming by 

demonstration (Cypher, 1993) with an underling inductive 

logic programming technique (Muggleton, 1991) that 

generalizes examples of correct and incorrect skill 

applications to learn individual skills and their applications 

sufficient to solve problems.  

For SimStudent, generalization for a particular skill 

application is done by providing a pragmatic explanation on 

“when” the skill should be applied on “what” part of the 

problem and “how” a step is made. A generalization of a 

skill application is then represented in the form of 

production rule. The what- and when-parts of an 

explanation compose the condition part (left-hand side) of 

the production rule. The how-part composes the action part 

(right-hand side) of the production rule. 

Learning Algorithms 

During tutoring, SimStudent accumulates positive examples 

of a particular skill application when (1) the Tutor provides 

a bottom-out hint on a step on which the skill is applied, or 

Table 1: The three most common error schemata. The 

problem schema is an abstracted form of an equation with A, 

B, and C representing numbers and v representing a variable. 

An error schema represents the error pattern by using letters 

from the problem schema 

Error Schema Frequency Problem Schema 

multiply by A  73 A/v=C, A/v=-C,  

-C=A/v, C=A/v, Av=C,  

v/-A=-C, C=v/-A, … 

divide by A 42 -Av=C, -Av=-C,  

C=-Av, -C=-Av,  

v/A=-C, C=v/A, … 

add –B 32 C=-B+Av, -B+(-Av)=-C, 

C=Av+(-B), -B+(-Av)=C, 

-C=-B+Av 
 



(2) SimStudent correctly applies the skill. On the other 

hand, SimStudent accumulates negative examples for a skill 

application when (1) SimStudent applies the skill 

incorrectly and gets negative feedback from the Tutor, or (2) 

when a tutor provides a hint on a different skill – the context 

where that skill was applied becomes an implicit negative 

example for all other skills. SimStudent composes a 

production rule for each individual skill so that the 

production rules agree all positive examples and do not 

agree any of the negative examples.  

To compose production rules, SimStudent uses two 

types of prior knowledge: feature predicates and operators. 

Feature predicates are boolean functions used to test 

whether a particular condition holds in a given situation. For 

example, a feature predicate isPolynomial(P) returns the 

boolean value true when P is a polynomial expression. 

Feature predicates are used to compose conditionals in the 

left-hand side of the production rules. Operators are general 

string manipulation functions. For example, an operator 

getCoefficient(T) returns a coefficient of the term T when T 

is a variable term. Operators are used to compose a right-

hand side action sequence to generate the target step in an 

example.  

Manipulating Prior Knowledge 

Students often make errors by treating numbers and 

variables superficially without taking the surrounding 

context into account. For example, when a student says 

3x+2 becomes 5x, he/she may have added 3 and 2 to get 5 

and concatenated x to it. Such behavior can be explained as 

if the student had recognized the tokens 3 and 2 in the 

expression as numbers and since there is a “+” in between, 

the student adds these numbers together.  

The error analysis mentioned in the previous section 

showed that indeed, many of the common errors made by 

students can be explained in this way. Namely, students 

often rely exclusively on “shallow” features that are more 

directly perceived in the input rather than taking the broader 

context into account to infer a deep feature. An example of 

use of shallow features is the mental equivalent of “to get a 

number in front of a variable” instead of “to get a 

coefficient of a variable term.”  We model such a shallow 

features with the “weak” operators, as opposed to the 

“strong” domain dependent operators.  

In general, a particular example can be modeled both 

with weak and strong operators. For example, suppose a 

step x/3=5 gets demonstrated to “multiply by 3.” Such step 

can be explained by a strong operator getDenominator(x/3), 

which returns a denominator of a given fraction term and 

multiply that number to both sides. On the other hand, the 

same step can be explained by a weak operator 

getNumberStr(x/3), which returns the left-most number in a 

given expression. In this context, the operator 

getNumberStr() is considered to be weaker than the operator 

getDemonimator(), because a production rule with 

getNumberStr() explains broader errors. For example, 

imagine how we could model the error schema for “multiply 

by A.” This error schema can be modeled with 

getNumberString() and multiply() – get a number and 

multiply both sides by that number. Without the weak 

operator, we need to have different (disjunctive) production 

rules to model the same error schema for different problem 

schemata – getNumerator() for A/v=C and getCoefficient() 

for Av=C.  

Based on the above observations, we have hypothesized 

that we can simulate how students’ learning incorrect skills 

from tutored problem-solving by providing SimStudent with 

weak operators. The next section describes an empirical 

study to test this hypothesis.   

Error Analysis Study 

Method 

SimStudent was tutored on how to solve linear equation by 

interacting with Carnegie Learning Algebra I Tutor like 

human students learn with the Tutor interactively. That is, 

SimStudent was posed a problem and asked to solve it. 

When SimStudent performed a step, the Tutor provided 

flagged feedback on the correctness of the step performed. 

SimStudent attempted to apply rules until a step is 

performed correctly. If SimStudent failed to perform a step 

correctly, then SimStudent asked the Tutor for a hint.  The 

Tutor then provided a bottom-out hint by demonstrating 

how to perform the step. 

There were two experimental conditions: a Strong Prior 

Knowledge condition, in which SimStudent was given only 

strong prior knowledge, and a Weak Prior Knowledge 

condition, in which some of the strong operators were 

replaced with weak operators. Specifically speaking, the 

strong operators to get a coefficient, to get a name of a 

variable in a variable term, to get a denominator, and to get 

a numerator were omitted. Instead, SimStudent was given 

weak operators such as to get a first number, to get a first 

number with sign, and to get a first alphabet letter.  

There were also 12 student conditions to control a 

difference in training problems. In each student condition, 

there were 13 to 20 training problems. Those training 

problems were randomly extracted from the same dataset 

used to analyze student errors in the previous section. 

To measure learning gain, the production rules learned 

by SimStudent were tested on the 11 test problems each 

time a tutoring was done on a single training problem. A set 

of 11 test problems were also selected from the same dataset 

from which the training problems were extracted, but they 

were semi-randomly selected so that four of the most 

commonly observed error schemata shown in Table 2 were 

included.  

Notice that since the test problems were extracted from 

a classroom study where (human) students solved the test 

problems. Thus, some of the steps in the test problems were 

correct and some were incorrect. To assess the accuracy of 

the model, we asked SimStudent to predict what action 

could be made for each intermediate state recorded in a test 

problem. Namely, we gave SimStudent intermediate states 



in a test problem one at a time and (using a terminology in a 

literature of production system) asked SimStudent to 

computed a conflict set for each state of the given test 

problem. We then used an existing Carnegie Learning 

Algebra I Tutor to evaluate the correctness of individual rule 

applications in the conflict set.  

In each of the 12 student conditions, SimStudent was 

trained on 113 steps in average (the number of actual 

training problems varies). Test problems have 140 correct 

and 28 incorrect steps. For the current study, we only 

analyzed skills for addition, subtraction, division, and 

multiplication.  

Measurements 

To measure the learning outcome, we have conducted both 

qualitative and quantitative assessment for the production 

rules learned.  

For a quantitative assessment, we computed a step 

score for each step in the test problems as follows: 0 if there 

is no correct rule application made, otherwise it is a ratio of 

the number of correct rule applications to the number of all 

rule applications allowing SimStudent to show all possible 

rule applications on the step. 

For a qualitative assessment, we are particularly 

interested in errors made by applying learned rules as well 

as the accuracy of prediction. Given a step S performed by a 

human student at an intermediate state �, SimStudent is 

asked to compute a conflict set on �. Rule application Ri 

(i = 1, …, n) is coded as follows: 

True Positive: Ri yields the same step as S, and S is a 

correct step.  

False Positive: Ri yields a correct step that is not same 

as S (S may be incorrect). 

False �egative: Ri yields an incorrect step that is not 

same as S (S may be correct). 

True �egative: Ri yields the same step as S and S is an 

incorrect step.  

Results 

Impact of Prior Knowledge on Learning 

Both the Weak Prior Knowledge (Weak-PK) and Strong 

Prior Knowledge (Strong-PK) conditions learned skills and 

the performance on test problems improved as learning 

proceeded. Figure 1 shows average step score, aggregated 

across the test problems and student conditions. The X-axis 

shows the number of training iterations.  

The Weak-PK and Strong-PK conditions had similar 

success rates on test problems after the first 8 training 

problems.  After that, the performance of the two conditions 

began to diverge. On the final test after 20 training problems, 

the Strong-PK condition was 82% correct while the Weak-

PK was 66%, a large and statistically significant difference 

(t = 4.00, p < .001).  Further, we fit simple power law 

functions to the learning curves (converting success rate to 

log-odds) and observed that the slope (or rate) of the Weak-

PK learning curve (.78) is smaller (or slower) than that of 

the Strong-PK learning curve (.82).  To test whether this 

learning rate difference is significant, we subtracted the two 

functions in their log-log form and verified in a linear 

regression analysis that the coefficient of the number of 

training problems (which predicts the difference in rate) is 

significantly greater than 0 (p < .05).  

While it is obvious that differences in prior knowledge 

can yield to differences in initial performance (as might be 

measured by a pre-test), this demonstration shows how 

differences prior knowledge can also affect the rate at 

which learning occurs.   

Impact on Prior Knowledge on Error Prediction 

Figure 2 shows a number of true negative predictions made 

on the test problems for each of the training iterations. 

Surprisingly, the Weak PK condition did make as many as 

22 human-like errors on the 11 test problems. On the other 

hand, the Strong PK condition hardly made human-like 

errors.  

To understand how well SimStudent predicted human-like 

errors, we computed an accuracy of error prediction, called 

Error Prediction score, as True Negative / (True Negative + 

False Negative) on incorrect steps in test problems. Figure 3 

shows the average of Error Prediction score for each of the 

training iterations.  

As can be seen in the figure, the Error Prediction score 

improved for the Weak PK condition as learning proceeded.  

Table 2: A list of the four most commonly observed error 

schemata appeared in the 11 test problems. In the Error and 

Problem Schemata, the letters A, B, and C shows a number 

whereas the letter v shows a variable. 

Error Schema Problem Schema 

add A -A = B+Cv, A-Bv = C, -Av + B = C 

subtract A -A + Bv = -C, Av = B, A = -Bv – C 

multiply A -Av = B, A/v = B, Av = B 

divide A -Av = -B, -Av + B = -C, v/A = -B 
 

 

Figure 1: Average step score after each of the 20 training 

problems for SimStudents with either strong or weak prior 

knowledge.  



This implies that SimStudent made more human-like errors 

than non-human like errors when trained on more problems. 

This observation further implies that the proposed model 

predicts that it is difficult to get rid of human-like errors 

when the learner does not have Strong prior knowledge.  

Table 3 shows the types of human-like errors made by 

SimStudent and the corresponding type of equations on 

which the error was made on the test problems.  

Although that SimStudent with Weak PK did actually 

make many human-like errors is an encouraging result, 

knowing the contents of production rules that SimStudent 

learned (which reveals the cause of the errors) provides us 

more knowledge about the impact of Weak PK on learning. 

The next section shows qualitative analysis of production 

rules learned with the Weak prior knowledge.  

Production Rules Learned 

Recall that we gave the Weak PK conditions three weak 

operators – first-number, first-number-with-sign, and first-

alphabet. All human-like errors shown in Table 3 can be 

explained using those operators. For example, an error to 

“add B” for “A = B+Cv” can be learned as the follows: 

IF right-hand side (RHS) is polynomial  

THEN get a first number from RHS, and  

 add that number to both sides  

The italicized operation corresponds to a weak operator of 

first-number. This rule might be learned from A=-B+Cv 

gets “add B.” 

Probably the most striking finding is that SimStudent 

sometimes learned correct production rules by combining 

weak operators.  

In one student condition, SimStudent first learned a 

skill to divide as “when the left-hand side (LHS) has a 

coefficient and RHS is a constant number then divide both 

sides by the first number with sign in LHS,” which is 

represented as a production rule as follows: 

IF LHS has a number before alphabet, and  

 RHS is constant number  

THEN get a first number with its sign from LHS, and 

 divide both sides with it 

This production rule generated a human-like error to “divide 

A” for “v/A=B” during tutoring. SimStudent then revised 

the rule as follows: 

IF LHS consists of a number and an alphabet 

THEN get the first alphabet from the LHS, and  

 compute a quotient of LHS divided by the 

alphabet,  and 

 divide both sides with the quotient 

The first two operations in the action part of this production 

rule are basically extracting a coefficient of a variable term. 

Namely, SimStudent eventually learned how to take a 

coefficient of a variable term by combining given weak 

prior knowledge. This observation suggests that SimStudent 

can also model students learning prior knowledge for future 

learning. This must be further investigated this in the future 

studies.  
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Figure 2: Number of True Negative predictions, which are 

the same errors made both by SimStudent and human 

students on the same step in the test problems. 

 

Figure 3: Average of Error Prediction score after each of the 

20 training problems for SimStudents with either strong or 

weak prior knowledge. 

Table 3: Errors and problem schemata that appeared during 

the test as shown in Figure 2.  

Error Schema Problem Schema Freqency 

add B A = B + Cv 55 

add A -Av+B = C 52 

add A A-Bv = C 44 

add C Av+B = C 23 

add C Av+B = -C 23 

add A -A = B+Cv 22 

subtract A -A+Bv = C 20 

subtract A -Av+B = C 20 

divide A v/A = B 14 

multiply A A/v = B 11 

multiply A Av = B 2 

subtract C Av+B = -C 1  

subtract A A = Bv+C 1 
 



Discussion 

In this paper, we showed that SimStudent can be treated as a 

computational model of human learning, and demonstrated 

the ability to model the error-prone process of student 

learning in a complex problem-solving domain. The 

fundamental hypothesis is that when students rely on more 

perceptually grounded, shallow prior knowledge then they 

are more likely to learn incorrect skills.  

We have seen the impact of Weak prior knowledge on 

learning in two ways: (1) although SimStudent learns skills 

with the Weak prior knowledge, the rate of learning slows 

down and the accuracy of learned skills is not as good as the 

ones learned with the Strong prior knowledge, and (2) the 

Weak prior knowledge leads SimStudent to learn 

qualitatively different production rules than the ones learned 

with the Strong prior knowledge. With the Weak prior 

knowledge, SimStudent often learned incorrect production 

rules that produced the same errors the human students 

made. 

In prior comparisons of SimStudent with real student 

data (Matsuda, Cohen, Sewall, Lacerda, & Koedinger, 

2007), we found that SimStudent started off behind real 

students (perhaps because real students have equation 

solving experience prior to using the tutor), but then quickly 

passed them. Namely, in these prior runs of SimStudent, 

which used only strong prior knowledge, the learning rate 

was too fast relative to human students.  The current weak-

PK version of SimStudent is not only producing plausible 

student errors but is learning at a slower rate that may well 

better correspond with the learning rate of real students.  We 

will explore such a comparison in future work. 

In the study shown in this paper, we controlled prior 

knowledge only for the operators to manipulate algebraic 

expressions. We also noticed that human students often pay 

attention only to surface (shallow) features of the problems. 

Such skewed perception on features can be modeled as 

weak feature predicates for SimStudent. An impact of 

having perceptually grounded weak feature predicates along 

with the weak operators on learning must be tested in the 

future studies.  

In the current study, we have designed weak operators 

based on the observation of errors made by human students. 

One way to increase a cognitive fidelity of the proposed 

computational model is to provide more human-like “weak” 

prior knowledge. Analyzing students’ misconceptions and 

beliefs in conceptual knowledge (as opposed to the 

procedural skills represented as production rules) would 

provide insight into designing such human-like “weak” 

prior knowledge. Such an attempt would also lead us to 

better understanding on how and why prior knowledge 

affects not only solving problems but also learning 

procedural skills.  
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